Project Icon

RWKV-LM

高性能并行化RNN,探索和应用RWKV模型

RWKV是一个高性能的并行化RNN,具有变换器级别的性能。该模型实现了快速的推理和训练速度,不依赖于传统的注意力机制,而是通过隐藏状态进行计算,优化了VRAM的使用,并支持处理无限长度的文本上下文。RWKV的这些特点使其在进行句子嵌入和处理复杂文本任务时显示出优越的能力。

rwkv-4-169m-pile - RNN与Transformer的高性能结合:高效文本生成
GPUGithubHuggingfaceRWKV人工神经网络开源项目文本生成模型转换脚本
RWKV项目由Bo Peng主导,结合RNN和Transformer的优势,提供强大的LLM性能,支持“无限”上下文长度、快速推理和节省显存。该模型支持并行训练,如GPT,可用于高效文本生成,并提供详细的使用和部署指南。项目中提供的多种硬件运行方案,使得用户能够轻松部署在不同环境中,享有快速且节能的文本生成体验,符合现代AI开发需求。
ChatRWKV - 由 RWKV(100% RNN)语言模型和开源提供支持的类似于 ChatGPT
ChatRWKVGithubHuggingfaceRNNRWKVStability EleutherAI开源项目
ChatRWKV基于RWKV语言模型,提供类似ChatGPT的体验。RWKV是目前唯一能在质量和扩展性上匹敌Transformer的RNN模型,具有更快的速度和更低的VRAM消耗。项目最新版本为RWKV-6,提供多个模型演示和详尽的开发资源,包括CUDA内核加速和多种推理引擎。用户可以通过这些资源构建高效的聊天机器人和语音生成系统,体验领先的AI技术。
VisualRWKV - 结合RWKV的创新视觉语言模型
GithubRWKVVisualRWKV开源项目微调视觉语言模型预训练
VisualRWKV是一个创新的视觉语言模型,基于RWKV架构设计,可处理多样化的视觉任务。该模型采用两阶段训练策略:首先进行预训练,利用预训练数据集训练视觉编码器到RWKV的投影层;随后进行微调,通过视觉指令数据优化模型性能。项目提供完整的训练指南,涵盖数据准备、模型获取和训练流程,支持多GPU并行和不同规模RWKV模型的训练。
Vision-RWKV - 基于RWKV架构的高效视觉感知模型
GithubVision-RWKV图像处理开源项目深度学习神经网络计算机视觉
Vision-RWKV是一种基于RWKV架构的视觉感知模型。该模型可高效处理高分辨率图像,具有全局感受野,并通过大规模数据集预训练实现良好扩展性。在图像分类任务中,Vision-RWKV性能超越ViT模型;在密集预测任务中,它以更低计算量和更快速度胜过基于窗口的ViT,并与全局注意力ViT相当。Vision-RWKV展现出成为多种视觉任务中ViT替代方案的潜力。
RWKV-infctx-trainer - 突破序列长度限制的RWKV模型训练工具
DeepSpeedGithubRWKV开源项目无限上下文深度学习训练器
RWKV-infctx-trainer是一款专为RWKV模型设计的训练工具,突破了传统上下文长度限制。它支持超过100万个token的序列训练,保持近乎恒定的显存消耗。项目集成了DeepSpeed 3和Hugging Face数据集,采用PyTorch 2.0、Lightning 2.0等技术提升训练效率。这为长序列语言模型研究提供了有力支持,适用于长文本和复杂上下文处理场景。
rwkv.cpp - 多精度量化推理和CPU优化的大语言模型
GithubPythonRWKVcuBLASggmlhipBLAS开源项目
该项目将RWKV-LM移植到ggerganov的ggml,支持FP32、FP16及量化的INT4、INT5和INT8推理,主要针对CPU使用,同时兼容cuBLAS。项目提供C库和Python封装。RWKV是一种不同于Transformer的大语言模型架构,只需前一步状态计算logits,适合长上下文使用。支持RWKV v5和v6模型以及LoRA检查点加载,适用于高质量和高性能需求的场景。
RWKV_Pytorch - RWKV大语言模型的纯PyTorch推理框架
GithubPyTorchRWKV大语言模型开源开源项目推理框架
RWKV_Pytorch是一个基于纯PyTorch实现的RWKV大语言模型推理框架。该框架支持批量和并行推理,充分发挥RWKV模型性能。其代码结构清晰,便于阅读和二次开发。框架支持ONNX格式模型的导出和推理,提供本地部署选项。未来计划适配香橙派AI Pro开发板,以实现在昇腾生态上推理RWKV模型。当前版本仅兼容RWKV v6模型(x060版本)。
RWKV-Runner - 一款全自动化轻量级RWKV管理和启动工具并提供与OpenAI API兼容的接口
GithubOpenAI APIRWKV Runner开源项目自动化语言模型部署
RWKV-Runner项目通过一个轻量级的可执行程序,简化了大型语言模型的使用,并提供与OpenAI API兼容的接口,使每个ChatGPT客户端都能作为RWKV客户端使用。项目支持多语言本地化,提供用户友好界面,自动安装依赖,包含一键启动、模型管理、前后端分离等功能。支持多级VRAM配置和CUDA加速,适用于大多数计算机。提供简单的部署示例、内置模型转换工具和远程模型检查功能。
KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
rknn-llm - 瑞芯微芯片大语言模型部署软件栈
AI模型部署GithubRKLLMRockchip芯片大语言模型开源项目模型转换
rknn-llm是瑞芯微芯片专用的大语言模型部署软件栈,包含模型转换工具RKLLM-Toolkit、运行时库RKLLM Runtime和RKNPU内核驱动。支持RK3588和RK3576系列平台,兼容TinyLLAMA、Qwen、Phi、ChatGLM3等多种主流大语言模型。该项目注重性能优化和量化精度提升,持续增加新功能,为开发者提供高效的AI模型部署方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号