Project Icon

model

开源地球AI模型与接口 构建数字地球的基石

Clay Foundation Model是专为地球科学研究设计的开源AI模型和接口。它可用于气候变化预测、地质分析等领域。项目支持JupyterLab环境,提供快速启动选项,适用于Binder和SageMaker Studio Lab。采用LightningCLI v2进行灵活的模型训练,文档基于Jupyter Book,便于研究人员和开发者共同参与和改进。

ML-Notebooks - 机器学习笔记本资源库,支持快速搭建和扩展
Github人工智能代码示例开源项目机器学习深度学习自然语言处理
ML-Notebooks为不同的机器学习任务和应用提供了一系列精简且易于扩展的笔记本。项目整合了Codespaces技术,用户仅需几步简单配置,便可启动一个配备完整依赖项的开发环境,非常适合教育和研究使用。从基础入门到深入探索如PyTorch、GNN及GANs等前沿技术,应有尽有。
pytorch-lightning - 深度学习框架的全方位AI模型训练与部署解决方案
AI模型训练GithubLightning FabricPyTorch Lightning开源项目模型部署深度学习热门
深度学习框架Pytorch-Lightning 2.0版本现已推出,提供清晰稳定的API,支持AI模型的预训练、微调和部署。该框架轻松实现Pytorch代码组织,将科学研究与工程实现分离,帮助研究人员和工程师高效进行模型训练与部署。通过提供各种训练和部署选项以及兼容多种硬件和加速器,Pytorch-Lightning兼顾模型的灵活性和可扩展性,适应从初学者到专业AI研究的不同需求。
cloudflare-ai-web - 基于Cloudflare Workers AI的轻量多模态AI平台,支持Serverless部署
ChatGPTCloudflare WorkersGemini ProGithubServerlessStable Diffusion开源项目
Cloudflare Workers AI支持快速搭建轻量化多模态AI平台,提供Serverless部署,无需服务器。支持ChatGPT、Gemini Pro、Stable Diffusion、llama-3和通义千问等模型,具备访问密码和本地存储聊天记录功能。详细的部署说明和环境变量设置指南,支持Docker、Deno Deploy和Vercel等多种部署方式。
covalent - 跨平台执行AI、ML和科研代码的统一框架
CovalentGithub云计算人工智能开源项目机器学习科学研究
Covalent是一个面向AI/ML工程师、开发者和研究人员的Python库,用于简化跨平台计算任务的执行。通过更改单行代码,用户可在云平台或本地集群上运行LLM、生成式AI和科学研究等任务。该库抽象了基础设施管理,实现无服务器化,并提供实时监控。Covalent支持AWS、Azure、GCP和SLURM等多种执行环境,为用户提供统一的界面和灵活的资源管理。
ml-workspace - 全功能机器学习和数据科学在线开发环境
DockerGithubJupyterML Workspace开源项目数据科学机器学习开发环境
ML Workspace 是一个集成多种流行数据科学库与工具的Web-based IDE (如Tensorflow, PyTorch, Keras, Sklearn)。支持Jupyter、VS Code、Tensorboard,便于快速部署并适用于本地机器学习开发,具备硬件与训练监控功能。支持通过Web、SSH或VNC进行远程访问,兼容Mac、Linux和Windows平台。
llm - LLM实验项目集合 探索大型语言模型应用
API密钥GithubLLM实验OpenAIPinecone开源项目虚拟环境
该开源项目提供了一系列LLM实验。内容包括虚拟环境设置、必要包安装以及API集成指南。通过这些实验,开发者可以深入了解大型语言模型的应用,探索AI文本处理和向量数据库技术。项目注重实践,为AI领域学习者提供了有价值的资源。
Eco2AI - 量化AI模型训练的碳足迹工具
CO2排放追踪Eco2AIGithub可持续AI开源项目机器学习能源消耗监测
Eco2AI是一个开源的Python库,用于追踪机器学习模型训练过程中的CO2排放。它通过监测CPU和GPU的能耗,结合地区排放系数来估算碳排放量。使用简单,只需在Python脚本中添加几行代码。Eco2AI记录详细的运行信息,包括项目名称、实验描述、耗电量和排放量等。该工具支持装饰器语法,并提供灵活的参数设置。Eco2AI致力于帮助研究人员和开发者量化AI模型训练的环境影响,为推动可持续AI发展提供数据支持。
Jupyter - 开源算法学习与交互式实践环境
GithubJupyter开源项目数据科学算法贡献指南
Jupyter项目是一个开源的算法学习平台,提供多种算法实现和交互式演示。用户可在线运行和编辑算法,体验便捷的开发环境。该项目欢迎贡献新算法,包括源代码、数学解释和演示。平台支持数据集使用,并设有贡献指南和行为准则,致力于构建协作学习社区。
neuralgcm - 结合机器学习与物理的大气模拟新方法
GithubNeuralGCM大气模型天气模拟开源项目机器学习气候模拟
NeuralGCM是一个Python库,用于构建结合机器学习和物理模型的大气模拟系统。这个开源项目为天气和气候模拟提供新方法,融合了物理模型的精确性和机器学习的灵活性。NeuralGCM旨在提升天气预报和气候研究的准确度,为大气科学研究者提供实用工具。该项目采用Apache 2.0许可证,支持学术研究和商业应用。
studio-lab-examples - 使用Amazon SageMaker Studio Lab的AI/ML学习示例
AI/MLAmazon SageMakerGithubJupyter notebooksSageMaker Studio Lab开源项目数据科学
本页面展示了如何使用Amazon SageMaker Studio Lab构建AI/ML学习环境的Jupyter笔记本示例,适用于个人数据科学家的ML学习之旅。包含计算机视觉、自然语言处理、地理空间数据科学和生成深度学习等领域的示例,以及详细的设置指南和AWS资源的连接方法。用户可以无需账户阅读或运行笔记本,并通过GitHub分享项目,是成为AI/ML实践者的有用参考资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号