Project Icon

DeepRobust

PyTorch图像和图神经网络对抗性攻防开源库

DeepRobust是一个基于PyTorch的开源库,专注于图像和图神经网络的对抗性攻击与防御。它提供多种攻防算法,支持MNIST、CIFAR10等数据集,可与PyTorch Geometric集成。该库适用于对抗性机器学习研究,也为构建鲁棒深度学习模型提供工具。DeepRobust支持大规模图如OGB-ArXiv的攻击,并包含节点嵌入攻击和受害模型。它还提供图像预处理方法APE-GAN,支持ImageNet数据集,新增UGBA后门攻击和PRBCD可扩展攻击算法。库中包含MedianGCN、AirGNN等鲁棒模型,以及用于转换PyTorch Geometric和DeepRobust数据集的工具,成为全面的对抗性机器学习研究平台。

pytorch-ood - 基于PyTorch的深度学习异常检测库
GithubPyTorch开源项目异常检测机器学习深度学习神经网络
pytorch-ood是一个专为深度学习设计的异常检测库。该库提供多种检测方法、损失函数、数据集和神经网络架构,支持预训练权重,并兼容pytorch-lightning等框架。它涵盖开放集识别、新颖性检测、置信度估计等领域,采用统一的异常分数约定,方便比较不同方法。这个基于PyTorch的工具库为研究人员和开发者提供了全面的异常检测解决方案。
DeepRL - PyTorch 中深度强化学习算法的模块化实现
A2CDQNDeepRLGithubPyTorch开源项目深度强化学习
DeepRL项目使用PyTorch实现了一系列流行的深度强化学习算法,提供模块化框架,适用于从简单任务到高难度游戏。支持的算法包括DQN、C51、QR-DQN、A2C、DDPG、PPO等,并具备异步数据生成和传输功能。项目依赖PyTorch v1.5.1,具体依赖请参考Dockerfile和requirements.txt。此外,项目提供代码示例和性能曲线图,适合相关研究参考和使用。
pytorch3d - 基于PyTorch的高效3D计算机视觉研究库
3D计算机视觉GithubPyTorch3D三角网格可微分渲染开源项目深度学习
PyTorch3D是一个基于PyTorch的3D计算机视觉研究库,提供高效、可复用的组件。主要功能包括三角网格操作、可微分渲染和隐式表示框架。该库与深度学习方法无缝集成,支持异构数据批处理、可微分运算和GPU加速。PyTorch3D已应用于多个研究项目,并提供全面的教程和文档。
gan - 开源生成对抗网络框架
GithubTensorFlow-GAN人工智能开源项目机器学习深度学习生成对抗网络
TensorFlow-GAN (TF-GAN) 是一个专注于生成对抗网络 (GANs) 训练和评估的开源库。该库提供核心训练框架、常用 GAN 操作、损失函数和评估指标,支持多种 GAN 架构。TF-GAN 易于安装使用,包含丰富的示例和教程。目前已在 Google 内部项目和多篇研究论文中得到应用,为 GAN 领域的研究和实践提供了有力支持。
pytorch-CycleGAN-and-pix2pix - PyTorch中的高效CycleGAN和pix2pix图像翻译
CycleGANGithubPyTorchpix2pix图像翻译开源项目神经网络
该项目提供了PyTorch框架下的CycleGAN和pix2pix图像翻译实现,支持配对和无配对的图像翻译。最新版本引入img2img-turbo和StableDiffusion-Turbo模型,提高了训练和推理效率。项目页面包含详细的安装指南、训练和测试步骤,以及常见问题解答。适用于Linux和macOS系统,兼容最新的PyTorch版本,并提供Docker和Colab支持,便于快速上手。
deep-learning-roadmap - 为开发者和研究人员提供的从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域深度学习的综合资源,
Github卷积神经网络图像识别开源项目强化学习深度学习生成模型
为开发者和研究人员提供深度学习的综合资源,从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域。借助本平台,您可以迅速找到所需资源,掌握最前沿的深度学习技术。
axodox-machinelearning - 基于C++的Stable Diffusion图像生成库,支持ControlNet
C++ControlNetGithubONNXStable Diffusion图像合成开源项目
该库是一款基于Stable Diffusion的图像生成工具,支持txt2img、img2img和图像修复功能,完全采用C++实现,无需依赖Python。其高性能和简化的部署过程非常适用于实时图形应用和游戏开发。库还支持ControlNet,通过输入图像来引导生成过程,并提供GPU加速的特征提取功能,如姿势估计、深度估计和边缘检测。此外,库包含多个代码示例和预编译模型,便于开发者快速集成和测试。
practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
pytorch-widedeep - 基于PyTorch的多模式深度学习工具包,结合表格、文本和图像数据
Githubpytorch-widedeep多模态深度学习宽和深模型开源项目机器学习表格数据
pytorch-widedeep是一个基于Google的Wide and Deep算法的开源项目,专为多模式数据集设计,支持结合表格、文本和图像数据。该工具包提供多种架构和自定义模型支持,如TabMlp、BasicRNN、TabTransformer等。详细的安装、快速入门和使用扩展步骤可在官方文档中找到。pytorch-widedeep适合多模式数据的深度学习研究和应用。
DeepLearning - 深度学习资源,涵盖教程、图书和实战项目
Github图像处理开源项目机器学习深度学习神经网络自然语言处理
探索全面的深度学习资源,涵盖教程、图书和实战项目,适合从新手到专家的每一个阶段。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号