Project Icon

INTERS

指令微调优化大型语言模型的搜索能力

INTERS是一个包含20个信息检索任务的指令微调数据集,旨在提升大型语言模型的搜索能力。该项目基于43个数据集构建,涵盖查询理解、文档理解和查询-文档关系理解三大类任务。实验表明,INTERS能有效增强LLaMA、Mistral等开源大型语言模型在信息检索方面的表现,为搜索技术发展开辟新路径。

Open Interpreter - 大型语言模型助力计算机代码执行和任务完成
AI工具LLMOpen Interpreter代码执行任务完成计算机使用
Open Interpreter 是一个创新开源项目,使大型语言模型(LLM)能在本地计算机上执行代码,完成多样化任务。该项目通过自然语言交互,为计算机使用开创新方式,利用AI辅助复杂操作。在GitHub上,Open Interpreter已获得超过49,000星标,彰显其在开发者社区的欢迎度。目前,项目正开发桌面应用程序,并开放早期访问,以拓展功能性和实用性。
RankGPT - 利用大语言模型优化信息检索排序
GithubRankGPT信息检索大语言模型开源项目排序指令蒸馏重排序
RankGPT项目研究如何利用ChatGPT等大语言模型改进信息检索排序。该项目提出指令排列生成技术和滑动窗口策略,解决了长文本排序问题。实验表明,这种方法在多个基准测试中性能显著。项目还开发了模型蒸馏技术,将大语言模型能力迁移到小型模型,提高了实用性。
instructlab - 创新的大语言模型对齐调优命令行工具
CLIGithubInstructLabLLM开源项目聊天机器人训练模型
InstructLab是为大语言模型(LLM)对齐调优设计的创新命令行工具。它采用合成数据方法,支持预训练模型下载、知识技能添加、合成数据生成、模型重训练和评估。工具兼容多种硬件平台,包括Apple M系列、AMD ROCm和NVIDIA CUDA,为LLM优化提供灵活高效的解决方案。
LLM-Tool-Survey - 大型语言模型工具学习调查研究
Github人工智能大语言模型工具学习开源项目综述自然语言处理
该研究系统性调查大型语言模型(LLMs)通过工具学习增强解决复杂问题能力。从工具学习的优势和实现方法两方面全面回顾现有文献,总结基准测试和评估方法,讨论当前挑战和未来方向,为相关研究和开发提供见解。
SmolLM-1.7B-Instruct - SmolLM-1.7B-Instruct 模型的技术特性与应用场景分析
GithubHuggingfaceSmolLM开源项目微调性能优化数据集模型语言模型
SmolLM-1.7B-Instruct 是一款包含135M、360M和1.7B参数的小型语言模型,通过高质量数据集微调而成。v0.2版本在主题保持和回答提示方面表现优越。支持多种应用方式,包括本地和浏览器演示。但需注意,该模型可能并非完全精准,建议作为辅助工具应用于常识问答、创造性写作和基础编程等场景。
e5-mistral-7b-instruct - 多语言NLP任务的全能型模型
GithubHuggingfaceMTEB开源项目性能指标模型模型评估自然语言处理跨语言测试
e5-mistral-7b-instruct是一个多语言自然语言处理模型,在MTEB基准测试中表现出色。模型能够处理句子相似度、文本分类、信息检索和文本聚类等任务,支持英语、德语、法语等多种语言。在Amazon评论分类和BUCC双语文本挖掘等复杂NLP任务中,该模型在准确率、F1分数和平均精度(MAP)等指标上均取得了良好成绩,展现了其在跨语言和多领域应用中的实用价值。
LLM2Vec-Mistral-7B-Instruct-v2-mntp - 将大型语言模型转变为高效文本编码器的简单方法
GithubHuggingfaceLLM2Vec开源项目文本编码模型深度学习自然语言处理语义相似度
LLM2Vec-Mistral-7B-Instruct-v2-mntp项目提供了一种将解码器型大语言模型转换为文本编码器的方法。该方法包括启用双向注意力、掩码下一个词预测和无监督对比学习三个步骤。经过转换的模型可生成高质量文本嵌入,适用于信息检索、文本分类和语义相似度等自然语言处理任务,并可通过微调进一步提升性能。
stark - 大规模半结构化检索基准,推动LLM性能提升
GithubSTaRK大规模开源项目查询数据集检索系统知识基
STaRK提供一个大规模的半结构化检索基准,涵盖产品搜索、学术论文检索和生物医学查询,旨在评估和提升LLM在文本与关系型知识库中的检索效果。该基准含有多样化和现实的查询,要求上下文相关推理,为未来研究提供有力支持。STaRK已在Hugging Face平台发布,并可以通过pip包直接加载,支持用户互动查询的探索性界面。更多详情请访问官方网站。
ms-marco-MiniLM-L-12-v2 - 跨编码器模型实现高效信息检索与段落排序
Cross-EncoderGithubHuggingfaceMS MarcoSentenceTransformers信息检索开源项目模型自然语言处理
ms-marco-MiniLM-L-12-v2是为MS Marco段落排序任务开发的跨编码器模型。该模型在信息检索领域表现优异,能够高效编码和排序查询与段落。在TREC Deep Learning 2019和MS Marco Passage Reranking数据集上,模型分别达到74.31的NDCG@10和39.02的MRR@10。每秒处理960个文档的速度使其在准确性和效率间实现了良好平衡,适用于各类信息检索应用场景。
data_management_LLM - 大型语言模型训练数据管理资源汇总
Github大语言模型开源项目数据质量监督微调训练数据管理预训练
该项目汇总了大型语言模型训练数据管理的相关资源。内容涵盖预训练和监督微调阶段,探讨领域组成、数据数量和质量等关键方面。项目还收录了数据去重、毒性过滤等技术,以及不同因素间的关系研究。这些资源为优化LLM训练数据管理提供了全面参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号