Project Icon

rubert-base-cased-sentence

为俄语句子表示提供的先进自然语言处理模型

rubert-base-cased-sentence是一个为俄语开发的句子编码器。该模型基于RuBERT,经过SNLI俄语翻译数据集和XNLI开发集俄语部分的微调。它采用12层结构,768个隐藏单元,12个注意力头,总计180M参数。通过平均池化token嵌入生成句子表示,为俄语自然语言处理任务奠定了坚实基础。

vietnamese-embedding - 基于PhoBERT的越南语句嵌入模型提升多项NLP任务性能
GithubHuggingfacePhoBERTsentence-transformersvietnamese-embedding开源项目模型自然语言处理语义相似度
vietnamese-embedding是一个针对越南语优化的句子嵌入模型,基于PhoBERT架构开发。该模型通过四阶段训练,包括SimCSE初始训练、XNLI持续微调、STS基准微调和数据增强,将越南语句子编码为768维向量。在语义文本相似性等多项评估中,该模型性能优于现有越南语嵌入模型,可应用于语义搜索、文本聚类等自然语言处理任务。
character-bert - 字符级CNN构建的开放词汇表神经网络模型
CharacterBERTGithub开放词表开源项目神经网络自然语言处理词嵌入
CharacterBERT是BERT的一个变体,采用字符级CNN模块动态构建词表示,无需依赖预定义词片词汇表。这种方法可生成任意输入标记的表示,适用于医学等专业领域。与标准BERT相比,CharacterBERT生成词级上下文表示,对拼写错误更为鲁棒,且可轻松适应不同领域而无需重新训练词片词汇表。该模型在多个医学领域任务中表现优于BERT,提供更便捷实用的词级开放词汇表表示。
OLMo-7B-0724-hf - OLMo开放式语言模型促进语言处理技术进步
AI2GithubHuggingfaceOLMo变形金刚开源语言模型开源项目模型自然语言处理
OLMo是由AI2开发的开源语言模型系列,旨在推动语言模型科学研究。该模型基于Dolma数据集训练,采用先进的Transformer结构,实现性能提升和多阶段优化。OLMo-7B-0724-hf具备强大的文本生成能力,适用于文本推理和生成任务。支持在HuggingFace平台上进行加载、微调和评估,且提供多种数据检查点,方便研究与开发。该项目得到多家机构支持,并在多个主要AI任务中表现优异。
LongRoPE - 扩展大语言模型上下文窗口至200万以上标记的方法
GithubLongRoPETransformer上下文窗口位置编码大语言模型开源项目
LongRoPE项目提出了一种将大语言模型(LLM)上下文窗口扩展至超过200万个标记的方法。通过利用位置嵌入中的非均匀性,项目实现了8倍的上下文窗口扩展,无需微调。采用逐步扩展策略从256k微调至2048k上下文,避免了对超长文本的直接微调。LongRoPE还调整了原始窗口长度内的嵌入,确保在各种任务中保持高效表现,适用于对话、问答、长文档摘要及少样本学习。
beto - 西班牙语BERT模型:BETO
BERTBETOGithub开源项目模型西班牙语语料库
此页面介绍了一个基于大型西班牙语语料库训练的BERT模型BETO,提供无区分大小写和区分大小写的Tensorflow和Pytorch版本。BETO应用全词掩蔽技术,在多项西班牙语基准测试中表现优异,并与多语言BERT及其他模型进行了对比。用户可以在HuggingFace Model Repository下载BETO模型,并通过HuggingFace Transformers库轻松使用。此外,页面还包含示例代码和引用信息。
roberta-base-bne-finetuned-msmarco-qa-es-mnrl-mn - 西班牙语语义搜索和问答优化模型
GithubHuggingfacesentence-transformers句子相似度开源项目模型自然语言处理西班牙语语义搜索
该模型是基于roberta-base-bne进行微调,专为西班牙语问答场景优化。通过将句子和段落转换为768维的密集向量空间,适用于语义搜索和文本聚类等任务。使用MS-MARCO数据集的西班牙语翻译版进行训练,尤其适合处理西班牙语问题。输入文本超过512个词片段时会自动截断,旨在提供精确的问答性能。
c4ai-command-r-plus - 多语言高级模型实现复杂任务自动化
C4AI Command R+GithubHuggingface多语言支持开源项目文本生成模型生成增强检索非商业用途
C4AI Command R+ 是拥有104B参数的多语言高级模型,适用于复杂任务自动化。支持多步工具使用和检索增强生成(RAG),优化推理、总结及问答等功能。在包括简体中文等10种语言中表现良好。可通过Hugging Face Space试用,需安装特定transformers库。非量化版本支持与bitsandbytes结合实现量化。此外,在开放LLM排行榜中表现优异,具备先进的多语言和工具化能力。
ember-v1 - 多任务自然语言处理基准测试模型
GithubHuggingfaceMTEBsentence-transformerstransformers句子相似度开源项目模型特征提取
ember-v1是一个在MTEB基准测试中表现出色的自然语言处理模型。该模型在分类、检索、聚类和语义相似度等多种NLP任务中取得了显著成果。在Amazon评论分类和问答检索等实际应用场景中,ember-v1展现出优异性能。这个多功能模型为文本分析和信息检索提供了有力支持,是研究人员和开发者的实用NLP工具。
transformers-tutorials - Transformers模型在自然语言处理中的应用教程
BERTGithubHugging FaceNLPPyTorchTransformers开源项目
本项目提供了关于如何使用Transformers模型在自然语言处理任务中进行精细调优的详细教程,包括文本分类、情感分析、命名实体识别和摘要生成等案例。教程旨在帮助用户掌握应用最新NLP技术的技巧,并提供配套的Python代码示例和工具指南。
opus-mt-uk-en - 乌克兰语至英语的开源神经机器翻译模型
GithubHuggingfaceOPUStransformer-align乌克兰语开源项目机器翻译模型英语
opus-mt-uk-en是一个开源的乌克兰语到英语神经机器翻译模型,基于transformer-align架构开发。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在Tatoeba测试集上,模型达到了64.1的BLEU分数和0.757的chr-F分数,显示出良好的翻译效果。研究者可以下载预训练权重和测试集结果进行进一步评估和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号