Project Icon

Algorithm-Practice-in-Industry

搜索推荐广告算法实践与前沿技术资源汇总

本项目汇集搜索、推荐、广告等领域的算法实践文章和前沿技术。包含顶会论文列表、优质博主文章和算法系列串讲。通过自动更新机制提供最新论文资讯,支持中英双语推送。为算法从业者提供全面的学习和参考资源。

Awesome-Deep-Learning-Papers-for-Search-Recommendation-Advertising - 搜索推荐广告领域深度学习论文精选集
Github嵌入技术广告系统开源项目推荐系统搜索引擎深度学习
该项目汇集了搜索、推荐和广告领域的前沿深度学习论文,收录了100多篇顶级会议论文。内容涵盖嵌入、匹配、排序(如CTR/CVR预测)、后排序、迁移学习和强化学习等关键技术,包括DSSM、YouTube DNN等经典模型。收录了Google、Facebook、Alibaba等顶级科技公司的研究成果,为从业者提供全面的学习资源和研究参考。通过这些精选论文,读者可深入了解行业前沿技术和实践应用。
Ad-papers - 探索最新计算广告学术论文与实用技术的开源集合与资源库
Github优化方法因子分解机嵌入模型开源项目计算广告预算控制
Ad-papers汇集了计算广告领域的学术论文、实用技术和业界分享,为广告行业的研究者和实践者提供理论支持和实践案例。涵盖优化方法、话题模型、大数据基础架构等多个子领域。开放性的开源属性强调项目的共享精神,适合广告技术开发者、数据科学家以及学术研究人员。
awesome-search - 全面深入的搜索技术资源集合
Github个性化推荐开源项目排序优化搜索技术搜索质量评估检索算法
该资源集合涵盖了搜索技术的多个方面,从基础的词法搜索到先进的语义搜索和混合搜索。重点关注了结果排序、个性化推荐和多样化等核心问题,同时也包含了实用的架构设计、测试方法和评估指标。项目收录了众多高质量的技术文章、视频教程和行业案例,为搜索领域的研究人员和工程师提供了全面的学习资料。
RecSysPapers - 推荐系统研究进展与行业实践全面汇总
Github开源项目推荐系统深度学习点击率预测特征交互论文汇总
RecSysPapers项目收录827篇推荐系统相关论文,涉及召回、排序、多任务和多模态等领域。项目持续更新业界进展,提供分类和阅读指引,是推荐系统研究和实践的重要参考。收录论文包括阿里巴巴、谷歌、微软等知名公司的最新实践,对推荐系统技术的理解和应用具有参考价值。
fun-rec - 系统化机器学习推荐算法教程与实战
FunRecGithub开源项目推荐系统机器学习算法工程师阿里天池
本教程适合具备机器学习基础、希望进入推荐算法领域的学习者,内容包括推荐系统概述、算法基础、实战项目和面经总结。系统化学习从基础到实战,助力面试成功。由多位热爱分享的同学整理,FunRec学习社区提供交流和技术支持。
Recommender_System - 推荐系统全面指南:从理论基础到工业实践
GithubGolangTensorFlow召回开源项目排序推荐系统
本项目系统介绍工业级推荐系统的理论知识,包括召回、排序、特征交叉和用户行为序列建模等核心环节。内容涵盖基于TensorFlow2的模型训练,以及高性能、高并发、高可用的Golang推理微服务实现。同时提供Scikit-learn和TensorFlow编程基础,为推荐系统学习者提供全面的知识体系和实践指导。
SearchEngine - 现代搜索引擎技术的核心原理与实践指南
Github召回开源项目排序搜索引擎查询词处理相关性
该项目系统地介绍搜索引擎核心技术,包括基础概念、相关性评估、查询处理、召回策略和排序算法。内容涵盖BERT模型在相关性判断中的应用,以及查询词处理和推荐系统的优化方法。项目详细讲解了倒排索引、向量召回、BERT模型应用等关键技术,并探讨了查询词分词、意图识别、排序模型训练等实际问题。通过幻灯片和视频资源,为开发者和研究人员提供搜索引擎技术的深入学习材料,这些内容对于理解和实现现代搜索引擎至关重要。
Awesome-Recsys - 推荐系统领域顶级会议论文资源库
Github人工智能开源项目推荐系统数据挖掘机器学习深度学习
Awesome-Recsys项目汇集推荐系统领域顶级会议论文,包括SIGIR、RecSys、ICLR等重要会议的最新研究成果。该资源库定期更新,提供论文标题和链接,方便研究人员和从业者快速了解领域进展,获取感兴趣的研究内容。
RES-Interview-Notes - 推荐系统算法与实践全面指南
Github协同过滤开源项目推荐系统机器学习深度学习矩阵分解
RES-Interview-Notes项目全面涵盖推荐系统各个方面,包括基础理论、传统算法、深度学习模型及工程实践。内容涉及协同过滤、矩阵分解等经典方法,以及AutoRec、NeuralCF等前沿模型。同时探讨了系统评估和落地实施,为推荐算法工程师提供系统学习资料。
RSPapers - 关于推荐系统的必读论文的精选清单
Github协同过滤开源项目推荐系统深度学习知识图谱隐私保护
RSPapers提供综合的推荐系统研究资源,覆盖系统教程、综合调研和多种议题,如社交、基于深度学习、冷启动、效率、探索与利说问题等,加上基于知识图谱和评论的最新研究。该资源库定期更新,包含多领域实用案例及隐私保护策略,非常适合研究者与实践者。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号