Project Icon

awesome-hallucination-detection

多模态大语言模型幻觉检测与评估文献综述

该项目汇总了关于大型语言模型(LVLMs)在多模态任务中幻觉检测的研究文献。这些研究提供了多个评估基准和框架,如HallusionBench、FactCHD、MHaluBench等,用于评估LVLMs在视觉和语言理解中的表现,涵盖了准确性、一致性、解释性等方面的指标。该仓库不仅评估现有模型,还提出新的解决方案,通过验证生成内容的准确性和一致性,减少虚假信息,提升语言模型的可靠性。

Awesome-LLM-Eval - 集成了评估工具、数据集、演示与论文资源的平台
GithubLLM应用LLM技术边界大模型评估开源项目评估工具评估数据集
Awesome-LLM-Eval 包罗万象,集成了评估工具、数据集、演示与论文资源,深入探讨大型语言模型的评估技术和方法。该平台支撑学术探索与实际应用,并致力于提升语言模型的透明度及可信度。
awesome-LLM-resourses - 中文大语言模型全面资源汇总 数据处理到评估应有尽有
GithubLLMRAG大语言模型开源项目微调推理评估
该项目汇总了中文大语言模型(LLM)领域的全面资源,包含数据处理、微调、推理和评估等多个环节的开源工具。资源库涵盖最新LLM技术,并收录RAG系统和AI代理等前沿应用。项目为LLM研究者和开发者提供了丰富的工具和信息,有助于推进相关项目的开发与应用。
Awesome_Matching_Pretraining_Transfering - 多模态模型、参数高效微调及视觉语言预训练研究进展汇总
Github参数高效微调图像文本匹配多模态模型大型模型开源项目视觉语言预训练
该项目汇总了多模态模型、参数高效微调、视觉语言预训练和图像-文本匹配领域的研究进展。内容涵盖大语言模型、视频多模态模型等多个方向,定期更新最新论文和资源。项目为相关领域的研究人员和开发者提供了系统的学习参考。
VLM_survey - 用于视觉任务的 AWESOME 视觉语言模型集合
GithubVision-Language Models开源项目数据集知识蒸馏视觉识别任务预训练方法
本页面详尽介绍了视觉语言模型(VLM)在视觉识别任务中的应用和发展。内容涵盖VLM的起源、常用架构、预训练目标、主流数据集及不同的预训练方式、迁移学习和知识蒸馏方法,并针对这些方法进行了详细的基准测试和分析。页面还讨论了未来研究的挑战和方向,让用户掌握VLM技术在图像分类、对象检测和语义分割等任务中的最新应用进展。
Awesome-Evaluation-of-Visual-Generation - 视觉生成评估方法全面汇总
Github图像生成开源项目生成模型视觉生成评估视频生成评估指标
该资源库汇集了视觉生成评估领域的各种方法。内容涵盖图像和视频生成模型评估、样本质量评估及用户控制一致性评估等多个方面。项目详细介绍了Inception Score、Fréchet Inception Distance等经典指标及最新评估方法。同时收录了视觉生成改进研究和其他相关资源,为该领域研究者提供全面参考。
Awesome-LM-SSP - 大模型可信度资源汇总,涵盖安全、隐私与多模态模型
Awesome-LM-SSPGithub信任度多模态模型安全性开源项目隐私
本页面提供与大模型(LMs)可信度相关的多维度资源,特别是多模态大模型(如视觉语言模型和扩散模型)。用户可浏览资源分类、最新更新和资源推荐提交方式,适合研究人员和开发者了解大模型在安全性和隐私保护等方面的研究进展。
Awesome-LLM-Uncertainty-Reliability-Robustness - 大语言模型的不确定性、可靠性和鲁棒性研究资源集
GithubLLM不确定性可靠性开源项目评估鲁棒性
该项目汇集了大语言模型不确定性、可靠性和鲁棒性相关的研究资源。内容包括模型评估、不确定性估计、校准、幻觉、真实性和推理能力等方面。通过整理这些资料,项目为研究人员和开发者提供了深入了解大语言模型局限性和改进方向的参考。
Awesome-Language-Model-on-Graphs - 图上大语言模型研究进展及资源汇总
GithubLLM基准测试开源项目推理知识图谱
该资源列表汇总了图上大语言模型(LLMs on Graphs)领域的前沿研究成果。内容涵盖纯图、文本属性图和文本配对图等多个方面,包括数据集、直接回答、启发式推理和算法推理等关键主题。列表基于综述论文整理,并持续更新,为研究人员提供全面参考,推动图上大语言模型研究进展。
RefChecker - 针对大语言模型输出的精细化幻觉检测框架
GithubRefChecker事实性大语言模型幻觉检测开源项目评估框架
RefChecker是一个标准化评估框架,用于检测大语言模型(LLM)输出中的细微幻觉。该框架将LLM响应分解为知识三元组,在三种不同背景下进行精细化幻觉检测。项目包括人工标注的基准数据集、模块化架构和自动化检查器,有助于评估和改进LLM输出的事实准确性。RefChecker为研究人员和开发者提供了评估和提高LLM生成内容可靠性的工具。
Awesome-LLM4Graph-Papers - 大型语言模型与图学习的融合:前沿研究进展
GithubLLM图学习图神经网络多模态学习开源项目自然语言处理
该项目汇集大型语言模型(LLM)在图学习领域的最新论文和资源,将相关方法分为GNN前缀、LLM前缀、LLM-图集成和纯LLM四大类。项目提供详细分类说明和可视化图表,助力研究人员快速把握领域动态。内容定期更新,欢迎社区贡献,是LLM与图学习交叉研究的重要参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号