Project Icon

VILA1.5-3b

交错图像文本预训练的视觉语言模型突破

VILA1.5-3b是一款基于交错图像-文本数据预训练的视觉语言模型。它具备多图像推理、上下文学习和视觉思维链等能力,可通过AWQ 4位量化部署于边缘设备。该模型采用交错图像-文本预训练、语言模型解冻和指令数据重混合等创新技术,有效提升了视觉语言和纯文本任务性能。VILA1.5-3b支持多种硬件架构,适用于计算机视觉、自然语言处理等研究领域。

InternVL2-26B - 全新多模态智能体实现长文本多图像及视频的智能理解
AI识别GithubHuggingfaceInternVL2多模态大语言模型开源项目模型计算机视觉
InternVL2-26B是一个基于视觉模型InternViT-6B和语言模型internlm2-chat-20b开发的多模态模型。通过8K上下文窗口支持长文本处理,同时具备多图像和视频分析能力。在文档理解、图表分析和场景文字识别等评测中表现优异,性能达到开源模型领先水平。
LLaVAR - 优化视觉指令微调的文本丰富图像理解模型
GithubLLaVAROCR能力多模态大语言模型开源项目文本丰富图像理解视觉指令微调
LLaVAR项目致力于增强大型语言模型对文本丰富图像的理解能力。通过改进视觉指令微调方法,该项目显著提升了模型在OCR相关任务上的表现。LLaVAR开源了模型权重、训练数据,并提供了环境配置、训练脚本和评估方法,为相关研究和开发提供了全面支持。
vilt-b32-mlm - 探索无卷积技术在ViLT模型中的应用
GithubHuggingfacePyTorchViLT图像处理开源项目模型深度学习语言建模
ViLT模型利用无卷积方法在多个数据集进行预训练,专注于掩码语言建模。由Kim等人发布,适用于图像与文本结合场景。可通过PyTorch代码实现简单安装和试用,支持掩码位置的文本填补,推动自然语言处理和图像识别时跨模态学习的进展。
llama3-llava-next-8b - 基于Llama 3的开源多模态视觉语言AI模型
GithubHuggingfaceLLaVA人工智能多模态模型开源项目机器学习模型深度学习
LLaVA-NeXT-8b是基于Meta-Llama-3-8B-Instruct的开源多模态模型,通过558K图文对和超过700K多模态指令数据训练而成。该模型集成视觉理解与文本生成能力,支持图像描述、视觉问答等任务。模型采用高效的分布式训练方法,训练时间约15-20小时。目前仅供学术研究使用,商业应用受限。
MoE-LLaVA - 高效视觉语言模型的新方向
GithubMoE-LLaVA多模态学习大视觉语言模型开源项目性能表现稀疏激活
MoE-LLaVA项目采用混合专家技术,实现了高效的大规模视觉语言模型。该模型仅使用3B稀疏激活参数就达到了与7B参数模型相当的性能,在多项视觉理解任务中表现优异。项目提供简单的基线方法,通过稀疏路径学习多模态交互,可在8张A100 GPU上1天内完成训练。MoE-LLaVA为构建高性能、低参数量的视觉语言模型探索了新的方向。
Llama-3.2-11B-Vision - Meta开发的多模态大语言模型 支持视觉识别和图像推理
GithubHuggingfaceLLAMA 3.2多模态模型开源项目机器学习模型自然语言处理计算机视觉
Llama-3.2-11B-Vision是Meta开发的多模态大语言模型,支持图像和文本输入、文本输出。该模型在视觉识别、图像推理、图像描述和通用图像问答方面表现出色。它基于Llama 3.1文本模型构建,采用优化的Transformer架构,通过监督微调和人类反馈强化学习进行对齐。模型支持128K上下文长度,经过60亿(图像,文本)对训练,知识截止到2023年12月。Llama-3.2-11B-Vision为商业和研究用途提供视觉语言处理能力。
llava-v1.6-vicuna-13b-hf - 多模态聊天机器人:增强图像识别和常识推理能力
GithubHuggingfaceLLaVa-Next图像文本问答多模态开源项目模型生成优化视觉编码器
LLaVa-1.6在提升图像分辨率和视觉指令数据集的基础上,增强了光学字符识别(OCR)和常识推理能力。整合了大型语言模型与视觉编码器,可用于图像描述、视觉问答和多模态聊天等应用。通过优质数据组合和动态高分辨率支持复杂的应用场景,优化算法效率,利用4位量化和Flash-Attention 2提升生成速度,使其成为多模态AI的一种先进工具。
vilt-b32-finetuned-vqa - ViLT:基于Transformer的无卷积视觉语言问答模型
GithubHuggingfaceViLTVision-and-Language Transformer图像处理开源项目模型自然语言处理视觉问答
vilt-b32-finetuned-vqa是一个在VQAv2数据集上微调的视觉问答模型,基于ViLT架构。该模型无需卷积或区域监督,可高效处理图像和文本的多模态任务。通过PyTorch,开发者能轻松实现视觉问答功能,只需输入图像和问题即可。这一模型为视觉语言理解领域的研究和应用提供了有力支持。
bakLlava-v1-hf - 基于Mistral-7B的视觉到文本生成模型
AI绘图BakLLaVAGithubHuggingface图像处理开源开源项目模型模型优化
该模型基于Mistral-7B,支持多图像与多提示操作,性能在多项基准测试中优于Llama 2 13B,适用于学术任务和视觉问答。项目更新中,以进一步优化使用体验。
InternVL2-8B - 多模态大语言模型在图像理解、视频分析和目标定位方面的全面能力
GithubHuggingfaceInternVL2多模态大语言模型开源项目指令微调推理性能模型视觉语言模型
InternVL2-8B是一个基于InternViT-300M-448px和internlm2_5-7b-chat的多模态大语言模型。该模型在文档理解、图表分析和场景文本识别等图像任务中表现优异,同时在视频理解和目标定位方面也展现出强大能力。支持8k上下文窗口,能够处理长文本、多图像和视频输入,在开源多模态模型中具有竞争力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号