Project Icon

cryptobert

预训练NLP模型用于加密货币社交媒体情感分析

CryptoBERT是针对加密货币社交媒体的情感分析预训练NLP模型,基于vinai's bertweet-base模型在加密货币领域训练而成。它分析超过320万个相关帖子,并针对熊市、中性与牛市进行了情感微调,使用了200万条标记数据以实现高准确性。虽技术上可处理514个token序列,但建议使用128个token以内。此项目在比特币、以太坊等数字货币的情感分析中表现卓越。

BERT-Emotions-Classifier - 情感多标签分类的高效工具
BERTGithubHuggingface多标签分类开源项目情感分析情感分类数据集模型
BERT-Emotions-Classifier是一个专注于多标签情感分类的BERT模型,基于sem_eval_2018_task_1数据集训练,能够识别愤怒、恐惧、喜悦等多种情感。适用于社交媒体和客户评论中的情感分析以及基于情感的内容推荐。尽管存在情感类别和输入长度的限制,但该模型在情感分析中表现优异,需注意可能的偏差问题。
bertweet-base-sentiment-analysis - 英文推文情感分析模型 BERTweet-Sentiment
BERTweetGithubHuggingface开源项目情感分析推特数据机器学习模型模型自然语言处理
bertweet-base-sentiment-analysis是一个基于SemEval 2017语料库训练的英文情感分析模型。它利用BERTweet作为基础,能够识别文本中的积极、消极和中性情感。作为pysentimiento库的组成部分,该开源项目主要面向非商业用途和科研领域,为自然语言处理研究提供了实用的情感分析工具。
bert-base-uncased-emotion - BERT模型用于情感分析的优化与应用
GithubHuggingfacePyTorch Lightningbert-base-uncased-emotion开源项目情感分析情感类别数据集模型
该项目基于bert-base-uncased模型,并使用PyTorch Lightning技术在一个情感数据集上进行了微调,支持文本分类和情感分析。训练参数包括128的序列长度、2e-5的学习率、32的批处理大小和4个训练周期,运行在两块GPU上。尽管模型尚未最优化,但在实际应用中显示出一定效果,达到了0.931的验证精度。更多项目详情可以通过nlp viewer查看。
bert-base-uncased-emotion - 情感数据集的高效文本分类模型
F1分数GithubHuggingfacebert-base-uncased-emotion准确率开源项目情感分析文本分类模型
bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。
twitter-xlm-roberta-base-sentiment - 基于XLM-roBERTa的多语言推特情感分析模型
GithubHuggingfaceTwitterXLM-roBERTa多语言情感分析开源项目情感分类模型自然语言处理
这是一个基于XLM-roBERTa的多语言推特情感分析模型,经过约1.98亿条推文预训练,并针对8种语言的情感分析任务进行了微调。该模型可以轻松集成到NLP管道中,适用于多语言社交媒体文本的情感分类,支持阿拉伯语、英语、法语、德语、印地语、意大利语、西班牙语和葡萄牙语。
SocialBERT-social - ESG领域社会文本分类的优化语言模型
ESGGithubHuggingfaceSocialBERT人工智能开源项目模型社会文本分类自然语言处理
SocialBERT-social是专注于ESG领域社会文本分类的高效语言模型。通过在SocialBERT-base基础上利用2k社会数据集进行微调,该模型大幅提升了社会文本识别精度。它与Hugging Face pipeline无缝集成,适用于复杂的ESG分析和风险评估任务。项目还提供了详尽的使用指南和相关论文,为研究者和实践者提供了全面的支持。
twitter-roberta-base-sentiment - RoBERTa模型实现Twitter推文情感分析
GithubHuggingfaceTweetEvalTwitterroBERTa开源项目情感分析模型自然语言处理
这是一个基于RoBERTa-base的Twitter情感分析模型,通过5800万条推文训练和TweetEval基准微调而成。模型可将英文推文分类为负面、中性和正面三种情感。项目提供了包含文本预处理、模型加载和情感预测的使用示例。此外,还有一个基于更多最新推文训练的改进版本,可提供更精确的情感分析。该开源项目为自然语言处理研究者和开发者提供了实用的Twitter情感分析工具。
SecureBERT_Plus - 网络安全领域的增强版语言模型
GithubHuggingfaceSecureBERT+开源项目数据集机器学习模型网络安全语言模型
该模型在网络安全数据上进行训练,提升了9%的MLM性能,使用8xA100 GPU进行大规模训练,目前已上传至Huggingface平台,供用户访问和使用。
bert-multilingual-go-emtions - 多语言情感分类模型,支持高效识别28种情感
BERTGithubGoEmotionsHuggingface多语言开源项目情感分类模型模型性能
该BERT模型经过微调,可在GoEmotions数据集上进行中英跨语言情感分类,支持28种情感类别,如喜悦、愤怒、爱等。模型在验证集上表现出85.95%的高准确率,训练过程结合了英语和机器翻译的中文样本,通过两阶段方法提升性能,包含初始训练和高置信度样本回馈再训练。
bertweet-base - BERTweet为英文推文提供预训练大规模语言模型
BERTweetGithubHuggingfaceRoBERTa开源项目推特模型自然语言处理预训练语言模型
BERTweet是针对英文推文预训练的开源大规模语言模型。该模型基于RoBERTa架构,使用8.5亿条英文推文进行训练,包括与COVID-19相关的推文。BERTweet在词性标注、命名实体识别、情感分析和讽刺检测等任务中表现出色。作为处理Twitter数据的基础工具,BERTweet可应用于多种自然语言处理任务,为研究人员提供了宝贵的资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号