Project Icon

QReader

高效稳定的Python QR码识别库

QReader是一个基于YOLOv8的Python库,专门用于识别和解码复杂场景中的QR码。该库集成了先进的QR码检测模型和图像预处理技术,能够在旋转、低分辨率等困难条件下保持较高的识别率。相较于传统方法,QReader表现更为稳定,为开发者提供了可靠的QR码读取解决方案。

YOLOv6 - 高性能目标检测框架支持多场景应用
GithubYOLOv6开源项目模型训练深度学习目标检测计算机视觉
YOLOv6是一款高效的目标检测框架,提供从轻量级到大型的多种模型选择。它在速度和精度上取得平衡,支持量化和移动端部署,适用于各种实时检测场景。最新版本还引入了分割功能,扩展了应用范围。YOLOv6不仅适用于工业领域,还可广泛应用于安防、交通等多个领域。
codeqai - 精确语义代码搜索和本地聊天,保障数据安全,实时追踪代码变更
Githubcodeqaigit同步开源项目本地嵌入流树集成语义代码搜索
CodeQAI 提供语义代码搜索和命令行界面(CLI)聊天,确保向量数据库实时同步最新代码变更。100%本地支持,防止数据泄漏。使用 langchain、treesitter、sentence-transformers 和 llama.cpp 等工具构建,兼容多种编程语言,支持开源和远程模型。安装简便,通过 pipx 管理隔离环境,特别适用于需要高效搜索和本地交互代码库的开发者。支持 Python 版本 >=3.9,<3.12。
ONNX-YOLOv8-Object-Detection - 将YOLOv8模型转换为ONNX格式的方法
GPUGithubONNXYOLOv8开源项目模型转换目标检测
本项目提供了一种将YOLOv8模型转换为ONNX格式的高效方法,支持在NVIDIA GPU或CPU上进行对象检测。确保输入图片尺寸与模型要求一致,以获得最佳检测精度。项目配有详细的安装指南和推理示例,包括图片、摄像头和视频推理,方便开发者快速上手并应用于实际场景。
qkeras - Keras 的量化扩展工具,通过替换部分 Keras 层,能够快速创建量化版深度学习模型
GithubKerasQKerasTensorFlow开源项目深度学习量化
QKeras 是一个针对 Keras 的量化扩展工具,通过替换部分 Keras 层,能够快速创建量化版深度学习模型。项目设计遵循用户友好、模块化和易扩展的原则,包括 QDense 和 QConv2D 等多种量化层。QTools 用于辅助硬件实现和能耗估算,AutoQKeras 可以自动进行模型量化和重新平衡。此项目提供简单易用的界面,适用于快速原型设计、前沿研究和生产环境。
BetterOCR - 多个OCR引擎与LLM结合实现高精度文本检测
BetterOCRGithubLLMOCR引擎多语言支持开源项目文本检测
BetterOCR通过结合EasyOCR、Tesseract和Pororo等OCR引擎,并使用LLM技术,解决多语言文本检测难题。支持自定义上下文以提高文本识别的精度,即使是罕见或非传统词汇也能保证高准确性。支持异步操作和改进的界面,并持续快速开发中。欢迎贡献与参与,共同提升OCR技术。
large-ocr-model.github.io - OCR 技术提升多模态大模型视觉问答性能研究
GithubOCR多模态大型模型开源项目缩放法则视觉问答
本项目研究 OCR 技术对多模态大模型性能的影响。实验表明,OCR 能显著提高模型在视觉问答任务中的表现。研究者构建了 REBU-Syn 数据集,验证了 OCR 领域的缩放法则,并开发了高精度 OCR 模型。这项工作为多模态大模型的应用开辟了新方向,揭示了 OCR 在增强模型能力方面的重要价值。
RapidOCR - 开源多语言OCR工具 支持跨平台快速部署
GithubONNXRapidOCR多平台多语言开源OCR开源项目
RapidOCR是一个开源的多平台、多语言OCR工具,具有高速识别和广泛兼容性。该工具支持快速离线部署,采用ONNXRuntime推理引擎,识别速度显著优于PaddlePaddle引擎。RapidOCR内置中英文识别功能,同时支持其他语言的自定义转换。基于深度学习技术,RapidOCR注重轻量化设计和高效性能,适用于快速OCR部署和定制化需求场景。
YOLO-Patch-Based-Inference - 补丁式推理优化小物体检测和实例分割
GithubYOLO实例分割开源项目深度学习目标检测计算机视觉
这个Python库实现了基于补丁的推理方法,用于改进小物体检测和实例分割。它支持多种Ultralytics模型,包括YOLOv8/v9/v10、FastSAM和RTDETR,可用于对象检测和实例分割任务。库提供了推理结果可视化功能,并通过优化的补丁处理和结果合并提高了小物体检测准确性。项目还包含交互式笔记本和教程,方便用户学习和使用。
doctr-torch-parseq-multilingual-v1 - 多语言OCR解决方案,兼具TensorFlow 2和PyTorch兼容性
DoctrGithubHuggingfacePyTorchTensorFlow 2光学字符识别开源项目模型模型预测
该项目是一种多语言光学字符识别(OCR)工具,支持TensorFlow 2和PyTorch,提供了流畅的用户体验。开发者可通过Python代码方便地加载和预测模型,实现从文字检测到识别的完整流程,非常适合需要多语言处理的应用。
yolov10x - 高效的实时端到端物体检测工具
GithubHuggingfacePyTorchYOLOv10对象检测开源项目模型深度学习计算机视觉
YOLOv10是一个高效的端到端物体检测开源项目,支持在COCO等数据集上进行准确的训练和验证。通过整合PyTorch模型资源,用户可简便地安装和应用。本项目支持从预训练模型进行迁移学习,适合多种计算机视觉应用需求,是追求速度与精度的理想选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号