Project Icon

opus-mt-da-en

基于Transformer架构的丹麦语-英语神经机器翻译模型

opus-mt-da-en是一个丹麦语到英语的神经机器翻译模型,基于transformer-align架构。该模型使用OPUS数据集训练,应用了归一化和SentencePiece预处理技术。在Tatoeba测试集上,模型获得了63.6的BLEU分数和0.769的chr-F分数,显示出良好的翻译效果。模型提供预训练权重下载,可用于丹麦语到英语的翻译任务。

opus-mt-en-af - 英语到南非荷兰语翻译模型,使用变压器对齐和标准化预处理
BLEU评分GithubHuggingfaceSentencePieceopus-mt-en-aftransformer-align开源项目模型翻译
该项目提供了英语到南非荷兰语的机器翻译模型,基于transformer-align算法和OPUS数据集,并采用了标准化和SentencePiece预处理。用户可以获取模型的原始权重和翻译测试结果,Tatoeba测试集的BLEU得分为56.1,显示出较高的翻译准确度。
opus-mt-bg-en - 保加利亚语至英语的开源神经机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-bg-en开源项目数据集机器翻译模型模型评估
opus-mt-bg-en是一个开源的保加利亚语到英语机器翻译模型,采用Transformer架构。该模型在OPUS数据集上训练,使用normalization和SentencePiece进行预处理。在Tatoeba测试集上,模型获得59.4的BLEU分数和0.727的chr-F分数。项目提供预训练权重、测试集翻译结果和评估分数,便于研究人员和开发者使用或进行性能评估。
opus-mt-sk-en - 斯洛伐克语到英语的开源机器翻译模型
BLEUGithubHuggingfaceOPUSopus-mt-sk-en开源项目模型翻译
opus-mt-sk-en是一个开源的Transformers模型,用于将斯洛伐克语翻译为英语。该模型基于opus数据集,并通过规范化和SentencePiece技术进行预处理。在JW300测试集上,模型表现良好,获得42.2的BLEU分数。此工具适用于需要高质量翻译的研究人员和开发者。
opus-mt-vi-en - 基于Transformer架构的越南语英语双向翻译模型
EnglishGithubHuggingfaceOPUSTatoeba-ChallengeVietnamese开源项目机器翻译模型
opus-mt-vi-en是一个基于transformer-align架构的越南语-英语机器翻译模型。该模型在Tatoeba测试集上实现了42.8的BLEU分数和0.608的chrF分数。模型采用normalization和SentencePiece进行预处理,支持越南语和英语间的双向翻译。用户可通过官方链接获取模型权重和测试数据集。
opus-mt-en-el - 英语到希腊语的开放源代码翻译模型,基于高效的自然语言处理技术
BLEUGithubHuggingfaceSentencePieceopus-mt-en-el开源项目模型翻译
项目提供从英语到希腊语的翻译模型,使用OPUS数据集和transformer-align模型进行训练,并包含预处理步骤如规范化和SentencePiece。用户可以下载原始模型权重和测试集合译文,模型在BLEU评分中取得56.4的成绩,强调翻译的准确性和流畅性。
opus-mt-en-et - 英语至爱沙尼亚语神经机器翻译模型
GithubHuggingfaceopus-mt开源项目数据集机器翻译模型模型评估语言模型
该英语至爱沙尼亚语(en-et)翻译模型基于transformer-align架构构建,使用OPUS数据集训练。模型采用normalization和SentencePiece预处理技术,在Tatoeba、newsdev2018和newstest2018等测试集上分别获得了54.0、21.8和23.3的BLEU评分。模型提供预训练权重及相关评估数据下载。
opus-mt-it-en - 基于OPUS数据集的意大利语至英语神经机器翻译模型
GithubHuggingfaceOPUS-MT开源项目意大利语机器翻译模型神经网络模型英语
opus-mt-it-en是一个基于transformer-align架构的意大利语至英语神经机器翻译模型。该模型利用OPUS数据集训练,采用normalization和SentencePiece进行预处理。在多个测试集上表现优异,尤其在Tatoeba测试集上获得70.9的BLEU分数和0.808的chr-F分数,显示出较高的翻译质量。此外,该模型在newssyscomb2009和newstest2009等其他测试集上也展现了出色的跨领域翻译能力。
opus-mt-hu-en - 基于OPUS数据集的匈牙利语-英语机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-hu-en开源项目数据集机器翻译模型自然语言处理
此项目为基于transformer-align架构的匈牙利语到英语机器翻译模型,采用OPUS数据集训练。模型使用normalization和SentencePiece进行预处理,在Tatoeba测试集上获得52.9的BLEU分数和0.683的chr-F分数。项目提供模型权重、测试集翻译结果及评估数据下载。
opus-mt-fr-de - transformer-align架构的法德翻译模型,适用于新闻政治等多领域
GithubHuggingfaceopus-mt-fr-de开源项目数据集机器翻译模型神经网络语言模型
该法德翻译模型基于transformer-align架构,使用OPUS数据集训练。模型在多个测试集上表现出色,Tatoeba测试集达49.1 BLEU分,新闻领域测试集普遍达22-28 BLEU分,在euelections_dev2019测试集上达26.4 BLEU分。采用normalization和SentencePiece预处理,适用于新闻、政治等多领域翻译。模型权重和测试集翻译结果可供下载使用。
opus-mt-en-hu - 基于Transformer的英匈双语机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-en-hutransformer开源项目机器翻译模型自然语言处理
opus-mt-en-hu是一个英语到匈牙利语的机器翻译模型,采用Transformer架构设计。该模型基于OPUS数据集训练,应用了normalization和SentencePiece预处理技术。在Tatoeba测试集上,模型实现了40.1的BLEU分数和0.628的chr-F分数,表现出良好的翻译能力。模型提供了原始权重和测试集翻译结果供下载,便于进行评估和实际应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号