Project Icon

opus-mt-hi-en

基于OPUS数据集的印地语-英语开源机器翻译模型

opus-mt-hi-en是一个开源的印地语到英语机器翻译模型,基于transformer-align架构构建。该模型使用OPUS数据集训练,采用规范化和SentencePiece进行预处理。在Tatoeba测试集上,模型达到40.4的BLEU分数。项目提供预训练权重下载,便于用户部署和使用。此外,模型还在newsdev2014和newstest2014等测试集上进行了评估,为研究人员提供了性能参考。

opus-mt-th-en - 开源泰英机器翻译模型实现48.1 BLEU评分
EnglishGithubHuggingfaceOPUSTatoebaThai开源项目机器翻译模型
基于transformer-align架构开发的泰语到英语机器翻译模型,通过SentencePiece技术预处理数据,模型在Tatoeba测试集上达到48.1 BLEU评分和0.644 chrF值。项目支持泰语到英语的单向翻译,采用Apache-2.0许可证发布。
opus-mt-en-es - 基于Transformer的英西机器翻译模型
GithubHuggingfaceOPUSTatoeba开源项目模型翻译模型英语西班牙语
opus-mt-en-es是一个开源的英语到西班牙语机器翻译模型,基于Transformer架构。该模型在新闻测试集上BLEU分数介于30-39之间,在Tatoeba测试集上BLEU分数达54.9,chrF分数为0.721。模型采用SentencePiece进行预处理,适用于各种英西翻译任务。项目开源于Hugging Face,提供模型权重下载。模型由Helsinki-NLP团队开发,使用OPUS平行语料库训练。除了高性能表现外,opus-mt-en-es还提供了完整的测试集翻译结果和评估分数,便于研究人员进行比较和分析。该模型适用于需要高质量英西翻译的各种应用场景。
opus-mt-da-en - 基于Transformer架构的丹麦语-英语神经机器翻译模型
GithubHuggingfaceOPUS-MTtransformer-align丹麦语开源项目机器翻译模型英语
opus-mt-da-en是一个丹麦语到英语的神经机器翻译模型,基于transformer-align架构。该模型使用OPUS数据集训练,应用了归一化和SentencePiece预处理技术。在Tatoeba测试集上,模型获得了63.6的BLEU分数和0.769的chr-F分数,显示出良好的翻译效果。模型提供预训练权重下载,可用于丹麦语到英语的翻译任务。
opus-mt-en-el - 英语到希腊语的开放源代码翻译模型,基于高效的自然语言处理技术
BLEUGithubHuggingfaceSentencePieceopus-mt-en-el开源项目模型翻译
项目提供从英语到希腊语的翻译模型,使用OPUS数据集和transformer-align模型进行训练,并包含预处理步骤如规范化和SentencePiece。用户可以下载原始模型权重和测试集合译文,模型在BLEU评分中取得56.4的成绩,强调翻译的准确性和流畅性。
opus-mt-uk-en - 乌克兰语至英语的开源神经机器翻译模型
GithubHuggingfaceOPUStransformer-align乌克兰语开源项目机器翻译模型英语
opus-mt-uk-en是一个开源的乌克兰语到英语神经机器翻译模型,基于transformer-align架构开发。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在Tatoeba测试集上,模型达到了64.1的BLEU分数和0.757的chr-F分数,显示出良好的翻译效果。研究者可以下载预训练权重和测试集结果进行进一步评估和应用。
opus-mt-eo-en - 准确的跨语言翻译引擎,支持世界语到英语的转换
BLEU评分GithubHuggingfaceopus-mt-eo-en开源项目数据集机器翻译模型
该项目专注于世界语到英语的翻译,使用transformer-align模型进行处理,结合SentencePiece和数据规范化。其在Tatoeba数据集上达到了54.8的BLEU分数,展示了出色的翻译能力。用户可以获取模型的详细资源,如下载原始权重和查看测试结果及评估分数,为跨语言交流提供有效支持。
opus-mt-mul-en - Transformer架构的多语种英语神经机器翻译模型
BLEU评分GithubHuggingfaceOPUS多语言模型开源项目机器翻译模型语言对
opus-mt-mul-en是基于Transformer架构的多语种到英语神经机器翻译模型。该模型支持200多种语言翻译为英语,覆盖范围广泛。在多个标准测试集上表现优异,尤其擅长欧洲语言翻译。模型采用SentencePiece分词技术,能够处理低资源语言,是一款功能强大的通用多语言翻译工具。
opus-mt-de-en - 基于OPUS数据集的德英机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MTTransformer模型开源项目德语到英语翻译机器翻译模型
opus-mt-de-en是一个基于OPUS数据集的德语到英语机器翻译模型。该模型采用transformer-align架构,并经过规范化和SentencePiece预处理。在多个新闻测试集上,模型表现优异,最高BLEU分数达43.7。模型支持多种测试集的翻译和评估,能够提供准确的德英翻译服务。该模型在新闻、科技等领域的翻译任务中表现尤为出色,适用于需要高质量德英翻译的各种应用场景。
opus-mt-en-jap - 英日神经机器翻译模型:基于OPUS数据集的高效翻译工具
BLEU评分GithubHuggingfaceopus-mt-en-jap开源项目机器翻译模型英日翻译语言模型
opus-mt-en-jap是一个基于transformer架构的英日神经机器翻译模型。该模型在OPUS数据集上训练,采用SentencePiece进行预处理。在bible-uedin测试集上,模型获得了42.1的BLEU分数和0.960的chr-F分数,显示出优秀的翻译能力。这一开源项目为需要进行英日文本转换的研究人员和开发者提供了实用的工具,适用于文献翻译、跨语言交流等领域。作为高效的机器翻译和英日翻译工具,它为用户提供了强大的语言转换支持。
opus-mt-en-vi - 基于Transformer架构的英越翻译模型 实现37.2 BLEU评分
GithubHuggingfaceOPUSTatoeba开源项目机器翻译模型英语越南语
基于transformer-align架构开发的英语到越南语机器翻译模型,在Tatoeba测试集上达到37.2 BLEU分和0.542 chrF评分。模型使用SentencePiece技术进行分词预处理,支持英语到越南语(含喃字)的翻译功能。作为OPUS项目的组成部分,该模型于2020年6月发布,并提供完整的模型权重与测试数据集。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号