Project Icon

LD

高效提升目标检测模型性能的定位知识蒸馏方法

LD项目提出了一种创新的定位蒸馏方法,旨在高效传递教师模型的定位知识到学生模型。该方法重构了定位知识蒸馏过程,并引入了有价值定位区域的概念,有选择地蒸馏语义和定位信息。实验结果显示,在不增加推理时间的前提下,LD能将GFocal-ResNet-50模型在COCO数据集上的AP从40.1提升至42.1。这种简单有效的蒸馏方案适用于多种密集目标检测器。

a-PyTorch-Tutorial-to-Object-Detection - PyTorch物体检测模型教程与实现
GithubPyTorch单发多框检测卷积神经网络多尺度特征图对象检测开源项目
本教程详细指导如何使用PyTorch实现物体检测模型,包括模型构建、训练、评估和推理等环节。采用高效的单次多框检测(SSD)算法,介绍多尺度特征图、先验框和非极大值抑制等关键概念。适合具备PyTorch和卷积神经网络基础的学习者,教程提供中文翻译版便于理解和应用。
LLaMA-Factory - 提升语言模型微调效率的统一平台
GithubLLaMA Factory大语言模型开源项目快速微调性能优化模型量化热门
LLaMA-Factory是一个高效的语言模型微调工具,支持多种模型和算法。该平台专注于提高微调速度,支持连续预训练、监督微调和激励建模等策略。LLaMA-Factory利用LoRA技术实现高效训练,并提供详尽的数据监控和快速推理能力。此外,新版本还增加了PiSSA算法,且支持多种开发平台如Colab和DSW,适合高质量文本生成和智能应用开发。
ldm-super-resolution-4x-openimages - 基于潜在扩散模型的图像超分辨率开源工具
GithubHuggingfaceLDM图像处理图像超分辨率开源项目模型深度学习神经网络
ldm-super-resolution-4x-openimages项目利用潜在扩散模型技术实现图像超分辨率处理。该项目在预训练自编码器的潜在空间中应用扩散模型,平衡了计算资源消耗与图像细节保留。项目支持图像4倍放大,并提供了完整的推理pipeline,适用于图像修复、无条件生成和语义场景合成等任务。
grounding-dino-tiny - Grounding DINO模型实现开放集目标检测的创新突破
GithubGrounding DINOHuggingface开源项目模型深度学习目标检测计算机视觉零样本学习
Grounding DINO模型通过结合DINO与接地预训练技术,实现了开放集目标检测。该模型添加文本编码器,扩展了传统闭集检测模型的能力,可进行零样本目标检测。在COCO数据集上,Grounding DINO取得了52.5 AP的优秀成绩,为计算机视觉中未标记物体的识别提供了新的解决方案。
LLM-RLHF-Tuning - RLHF三阶段训练支持指令微调、奖励模型和多种训练方式
DPOGithubLLaMALLaMA2PPORLHF开源项目
本项目实现了RLHF的三阶段训练,包括指令微调、奖励模型训练和PPO算法训练。支持LLaMA和LLaMA2模型,并提供多种分布式加速训练方法。项目附有详细的实现文档,并对比了其他开源框架的功能,是RLHF训练的宝贵资源。
llm_distillation_playbook - 大语言模型蒸馏技巧与实践指南
GPT-4GithubLLM开源开源项目模型蒸馏评估标准
LLM Distillation Playbook项目提供了系统化的大语言模型蒸馏实践指南。该项目探讨了模型蒸馏的关键概念、评估标准和实用技巧,涵盖数据准备到模型部署的全流程。它为工程师和ML实践者提供见解,帮助在生产环境中将大型语言模型压缩为高效小型版本。该指南融合学术研究和实践经验,是开源LLM开发的参考资源。
GLIP - 视觉语言预训练模型实现高效零样本和小样本物体检测
GLIPGithub开源项目目标检测计算机视觉零样本学习预训练
GLIP是一种视觉语言预训练模型,在零样本和小样本物体检测任务中表现优异。该模型在COCO和LVIS等标准基准测试中超越了多个有监督基线。GLIP还具有出色的迁移能力,在13个下游物体检测任务中,少样本GLIP可与全监督Dynamic Head模型媲美。项目提供预训练、零样本评估和微调等功能的代码实现,以及多个预训练模型。
yolov9 - 高效准确的目标检测算法
GithubYOLOv9开源项目深度学习目标检测神经网络计算机视觉
YOLOv9是一种新型目标检测算法,采用可编程梯度信息技术提高学习能力。该开源项目提供YOLOv9的官方实现,包含预训练模型、训练评估脚本和使用文档。在COCO数据集上,YOLOv9展现出优异的检测性能,同时保持较低的模型复杂度。研究人员和开发者可利用这一工具进行高效准确的目标检测任务。
sdxl-detector - 高效分类现代图像与Wikimedia-SDXL数据优化模型
AI艺术检测器AutoTrainGithubHuggingfaceSDXLWikimedia图像分类开源项目模型
SDXL Detector专为精确分类Wikimedia-SDXL图像对而设计,通过微调umm-maybe AI art detector模型,有效提高了对现代扩散模型和非艺术性图像的识别能力。尽管对旧版本生成模型图像的检测能力可能不如原始模型,SDXL Detector适合非商业用途,凭借AutoTrain训练展现出高效性能,如出色的f1得分和精准度。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号