Project Icon

llm-hallucination-survey

大语言模型幻觉问题研究综述

该项目全面调查了大语言模型中的幻觉问题,涵盖评估方法、成因分析和缓解策略。研究包括输入冲突、上下文冲突和事实冲突等多种幻觉类型,并汇总了相关学术文献。项目成果有助于提升大语言模型在实际应用中的可靠性,为该领域的研究和开发提供重要参考。

llm-hallucination-survey

Version Stars Issues

Hallucination refers to the generated content that while seemingly plausible, deviates from user input (input-conflicting), previously generated context (context-conflicting), or factual knowledge (fact-conflicting).

LLM evaluation

This issue significantly undermines the reliability of LLMs in real-world scenarios.

📰News

😎 We have uploaded a comprehensive survey about the hallucination issue within the context of large language models, which discussed the evaluation, explanation, and mitigation. Check it out!

Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models

If you think our survey is helpful, please kindly cite our paper:

@article{zhang2023hallucination,
      title={Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models}, 
      author={Zhang, Yue and Li, Yafu and Cui, Leyang and Cai, Deng and Liu, Lemao and Fu, Tingchen and Huang, Xinting and Zhao, Enbo and Zhang, Yu and Chen, Yulong and Wang, Longyue and Luu, Anh Tuan and Bi, Wei and Shi, Freda and Shi, Shuming},
      journal={arXiv preprint arXiv:2309.01219},
      year={2023}
}

🚀Table of Content

🔍Evaluation of LLM Hallucination

Input-conflicting Hallucination

This kind of hallucination denotes the model response deviates from the user input, including task instruction and task input. This kind of hallucination has been widely studied in some traditional NLG tasks, such as:

  • Machine Translation:

    • Hallucinations in Neural Machine TranslationDownload Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fannjiang, David Sussillo [paper] 2018.9
    • Looking for a Needle in a Haystack: A Comprehensive Study of Hallucinations in Neural Machine Translation Nuno M. Guerreiro, Elena Voita, André F.T. Martins [paper] 2022.8
    • Detecting and Mitigating Hallucinations in Machine Translation: Model Internal Workings Alone Do Well, Sentence Similarity Even Better David Dale, Elena Voita, Loïc Barrault, Marta R. Costa-jussà [paper] 2022.12
    • HalOmi: A Manually Annotated Benchmark for Multilingual Hallucination and Omission Detection in Machine Translation David Dale, Elena Voita, Janice Lam, Prangthip Hansanti, Christophe Ropers, Elahe Kalbassi, Cynthia Gao, Loïc Barrault, Marta R. Costa-jussà [paper] 2023.05
  • Data-to-text:

    • Controlling Hallucinations at Word Level in Data-to-Text Generation Clément Rebuffel, Marco Roberti, Laure Soulier, Geoffrey Scoutheeten, Rossella Cancelliere, Patrick Gallinari[paper] 2021.2
    • On Hallucination and Predictive Uncertainty in Conditional Language Generation Yijun Xiao, William Yang Wang[paper] 2021.3
    • Faithful Low-Resource Data-to-Text Generation through Cycle Training Zhuoer Wang, Marcus Collins, Nikhita Vedula, Simone Filice, Shervin Malmasi, Oleg Rokhlenko[paper] 2023.7
  • Summarization:

    • On Faithfulness and Factuality in Abstractive Summarization Joshua Maynez, Shashi Narayan, Bernd Bohnet, Ryan McDonald[paper] 2020.5
    • Hallucinated but Factual! Inspecting the Factuality of Hallucinations in Abstractive Summarization Meng Cao, Yue Dong, Jackie Chi Kit Cheung[paper] 2021.9
    • Summarization is (Almost) Dead Xiao Pu, Mingqi Gao, Xiaojun Wan[paper] 2023.9
    • Hallucination Reduction in Long Input Text Summarization Tohida Rehman, Ronit Mandal, Abhishek Agarwal, Debarshi Kumar Sanyal[paper] 2023.9
    • Lighter, yet More Faithful: Investigating Hallucinations in Pruned Large Language Models for Abstractive Summarization George Chrysostomou, Zhixue Zhao, Miles Williams, Nikolaos Aletras[paper] 2023.11
    • TofuEval: Evaluating Hallucinations of LLMs on Topic-Focused Dialogue Summarization Liyan Tang, Igor Shalyminov, Amy Wing-mei Wong, Jon Burnsky, Jake W. Vincent, Yu'an Yang, Siffi Singh, Song Feng, Hwanjun Song, Hang Su, Lijia Sun, Yi Zhang, Saab Mansour, Kathleen McKeown[paper] 2024.02
  • Dialogue:

    • Neural Path Hunter: Reducing Hallucination in Dialogue Systems via Path Grounding Nouha Dziri, Andrea Madotto, Osmar Zaiane, Avishek Joey Bose[paper] 2021.4
    • RHO: Reducing Hallucination in Open-domain Dialogues with Knowledge Grounding Ziwei Ji, Zihan Liu, Nayeon Lee, Tiezheng Yu, Bryan Wilie, Min Zeng, Pascale Fung[paper] 2023.7
    • DiaHalu: A Dialogue-level Hallucination Evaluation Benchmark for Large Language Models Kedi Chen, Qin Chen, Jie Zhou, Yishen He, Liang He[paper] 2024.3
  • Question Answering:

    • Entity-Based Knowledge Conflicts in Question Answering Shayne Longpre, Kartik Perisetla, Anthony Chen, Nikhil Ramesh, Chris DuBois, Sameer Singh[paper] 2021.9
    • Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering Vaibhav Adlakha, Parishad BehnamGhader, Xing Han Lu, Nicholas Meade, Siva Reddy [paper] 2023.7

Context-conflicting Hallucination

This kind of hallucination means the generated content exhibits self-contradiction, i.e., conflicts with previously generated content. Here are some preliminary studies in this direction:

  1. Knowledge Enhanced Fine-Tuning for Better Handling Unseen Entities in Dialogue Generation Leyang Cui, Yu Wu, Shujie Liu, Yue Zhang[paper] 2021.9

  2. A Token-level Reference-free Hallucination Detection Benchmark for Free-form Text Generation Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao, Zhifang Sui, Weizhu Chen, Bill Dolan[paper] 2022.5 (not only limited to context-conflicting type)

  3. Large Language Models Can Be Easily Distracted by Irrelevant Context Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H. Chi, Nathanael Schärli, Denny Zhou[paper] 2023.2

  4. HistAlign: Improving Context Dependency in Language Generation by Aligning with History David Wan, Shiyue Zhang, Mohit Bansal[paper] 2023.5

  5. Self-contradictory Hallucinations of Large Language Models: Evaluation, Detection and Mitigation Niels Mündler, Jingxuan He, Slobodan Jenko, Martin Vechev [paper] 2023.5

Fact-conflicting Hallucination

This kind of hallucination means the generated content conflicts with established facts. This kind of hallucination is challenging and important for practical applications of LLMs, so it has been widely studied in recent work.

  1. TruthfulQA: Measuring How Models Mimic Human Falsehoods Stephanie Lin, Jacob Hilton, Owain Evans [paper] 2022.5

  2. A Token-level Reference-free Hallucination Detection Benchmark for Free-form Text Generation Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao, Zhifang Sui, Weizhu Chen, Bill Dolan [paper] 2022.5

  3. A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, Pascale Fung [paper] 2023.2

  4. HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large Language Models Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, Ji-Rong Wen [paper] 2023.5

  5. Automatic Evaluation of Attribution by Large Language Models Xiang Yue, Boshi Wang, Kai Zhang, Ziru Chen, Yu Su, Huan Sun [paper] 2023.5

  6. Adaptive Chameleon or Stubborn Sloth: Unraveling the Behavior of Large Language Models in Knowledge Clashes Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, Yu Su [paper] 2023.5

  7. LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond Philippe Laban, Wojciech Kryściński, Divyansh Agarwal, Alexander R. Fabbri, Caiming Xiong, Shafiq Joty, Chien-Sheng Wu [paper] 2023.5

  8. Evaluating the Factual Consistency of Large Language Models Through News Summarization Derek Tam, Anisha Mascarenhas, Shiyue Zhang, Sarah Kwan, Mohit Bansal, Colin Raffel [paper] 2023.5

  9. Methods for Measuring, Updating, and Visualizing Factual Beliefs in Language Models Peter Hase, Mona Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov, Mohit Bansal, Srinivasan Iyer [paper] 2023.5

  10. How Language Model Hallucinations Can Snowball Muru Zhang, Ofir Press, William Merrill, Alisa Liu, Noah A. Smith [paper] 2023.5

  11. Evaluating Factual Consistency of Texts with Semantic Role Labeling Jing Fan, Dennis Aumiller, Michael Gertz [paper] 2023.5

  12. FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, Luke Zettlemoyer, Hannaneh Hajishirzi [paper] 2023.5

  13. Measuring and Modifying Factual Knowledge in Large Language Models Pouya Pezeshkpour [paper] 2023.6

  14. KoLA: Carefully Benchmarking World Knowledge of Large Language Models Jifan Yu, Xiaozhi Wang, Shangqing Tu, Shulin Cao, Daniel Zhang-Li, Xin Lv, Hao Peng, Zijun Yao, Xiaohan Zhang, Hanming Li, Chunyang Li, Zheyuan Zhang, Yushi Bai, Yantao Liu, Amy Xin, Nianyi Lin, Kaifeng Yun, Linlu Gong, Jianhui Chen, Zhili Wu, Yunjia Qi, Weikai Li, Yong Guan, Kaisheng Zeng, Ji Qi, Hailong Jin, Jinxin Liu, Yu Gu, Yuan Yao, Ning Ding, Lei Hou, Zhiyuan Liu, Bin Xu, Jie Tang, Juanzi Li [paper] 2023.6

  15. Generating Benchmarks for Factuality Evaluation of Language Models Dor Muhlgay, Ori Ram, Inbal Magar, Yoav Levine, Nir Ratner, Yonatan Belinkov, Omri Abend, Kevin Leyton-Brown, Amnon Shashua, Yoav Shoham [paper] 2023.7

  16. Fact-Checking of AI-Generated Reports Razi Mahmood, Ge Wang, Mannudeep Kalra, Pingkun Yan [paper] 2023.7

  17. Med-HALT: Medical Domain Hallucination Test for Large Language Models Logesh Kumar Umapathi, Ankit Pal, Malaikannan Sankarasubbu [paper] 2023.7

  18. Large Language Models on Wikipedia-Style Survey Generation: an Evaluation in NLP Concepts

    Fan Gao, Hang Jiang, Moritz Blum, Jinghui Lu, Yuang Jiang, Irene Li [paper] 2023.8

  19. ChatGPT Hallucinates when Attributing Answers Guido Zuccon, Bevan Koopman, Razia Shaik [paper] 2023.9

  20. BAMBOO: A Comprehensive Benchmark for Evaluating Long Text Modeling Capacities of Large Language Models *Zican Dong, Tianyi Tang, Junyi Li, Wayne Xin Zhao, Ji-Rong

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号