Project Icon

TensorFlow-Tutorials

TensorFlow 2 深度学习教程

这些教程为深度学习和TensorFlow 2 的新手提供全面指导,涵盖简单线性模型、自然语言处理和图像生成等主题。每个教程附有详细代码示例和相应的YouTube视频讲解,帮助学习者快速掌握。适合希望深入了解TensorFlow及其应用的开发者和研究人员。

machine-learning-for-the-web - 交互式机器学习在Web应用中的实践教程
GithubRunwayMLTensorFlow.jsml5.js开源项目机器学习神经网络
项目为Web开发者和创意工作者提供了机器学习在浏览器环境中的应用指南。内容覆盖预训练模型运行、自定义数据模型创建等全流程,聚焦机器学习在创意项目中的实际应用。涉及图像/声音分类、人脸/姿势识别、多媒体生成等主题,运用迁移学习、卷积神经网络等技术。通过实践,参与者可掌握常见机器学习模型的工作原理、训练方法及其在创意领域的应用潜力。
AndroidTensorFlowMNISTExample - 使用TensorFlow在Android平台上的MNIST手写数字识别示例
AndroidGithubMNISTTensorFlow开源项目手写数字识别机器学习
该项目展示了如何使用TensorFlow在Android平台上为MNIST数据集创建手写数字识别模型。用户无需自行构建库,可以直接通过Maven获取所需资源。项目提供了详细的模型训练步骤、资源链接及贡献指南,适合对机器学习和Android开发有兴趣的用户。
mit-deep-learning - MIT深度学习课程教程集合
GithubMIT Deep Learning卷积神经网络开源项目深度学习教程深度强化学习生成对抗网络
本项目汇集了MIT深度学习课程的全面教程,涵盖基础知识、场景分割和生成对抗网络(GANs)等主题,适合初学者和进阶用户。项目包括前沿模型如DeepLab和BigGAN,并提供Jupyter Notebook和Google Colab示例,帮助学习者掌握核心技术。另有深度强化学习竞赛DeepTraffic,挑战开发者在复杂交通环境中训练神经网络实现高速驾驶。
a-PyTorch-Tutorial-to-Transformers - PyTorch实现Transformer模型的详细教程与实践指南
GithubPyTorchTransformer开源项目机器翻译注意力机制编码器-解码器架构
本项目提供了一个基于PyTorch的Transformer模型实现教程。教程深入讲解了Transformer的核心概念,如多头注意力机制和编码器-解码器架构,并以机器翻译为例展示应用。内容涵盖模型实现、训练、推理和评估等环节,适合想要深入理解和应用Transformer技术的学习者。
AI-Notes - 全面的AI学习资源 从理论到实践的系统指南
AIGithub人工智能开源项目机器学习深度学习神经网络
该项目提供全面的AI学习资源,涵盖机器学习、深度学习和自然语言处理等领域。内容包括数学基础、算法原理及工具应用,从理论到实践构建系统知识。通过Jupyter Notebook和Colab实现互动学习,适合AI初学者和从业者掌握核心概念及最新进展。
generative_adversarial_networks_101 - 探索生成对抗网络的核心概念和实践实现
GANGithub人工智能图像生成开源项目深度学习生成对抗网络
该项目全面介绍生成对抗网络(GANs)的基本概念和应用实践。内容涵盖多种GAN模型在MNIST和CIFAR-10数据集上的具体实现,包括DCGAN、CGAN等。通过详细的代码示例、训练过程和结果可视化,展示了GAN的工作原理。项目还提供丰富的参考资料和相关论文,为深入学习和实践GAN提供了有价值的资源。
GAN-MNIST - TensorFlow实现的GAN模型生成MNIST手写数字图像
GANGithubMNISTTensorFlow图像生成开源项目深度学习
此项目展示了使用TensorFlow实现生成对抗网络(GAN)处理MNIST手写数字数据集。项目包含模型定义、训练脚本和图像处理工具,支持MNIST和CelebA人脸数据集。通过生成样本的可视化结果,展示了GAN生成逼真手写数字图像的能力。项目代码复现了Theano版本的实现,为开发者提供了学习和实践GAN技术的参考资源。
scikit-learn-videos - 使用scikit-learn学习机器学习实践技能
GithubJupyter NotebookPythonscikit-learn开源项目数据科学机器学习
该项目通过10个scikit-learn视频教程和配套Jupyter notebook,系统讲解机器学习基础知识与实践技能。内容涵盖机器学习概念、Python环境配置、数据处理、模型训练评估、交叉验证和参数优化等。总时长4.5小时,并提供更新的免费在线课程,包含测验和证书,是入门scikit-learn的综合学习资源。
Data-science - 数据科学项目的综合资源库和实践指南
GitHubGithubMLOpsPython开源项目数据科学机器学习
Data-science项目汇集了丰富的数据科学资源,涵盖MLOps、数据管理、测试和生产力工具等领域。通过文章、代码和视频教程,该项目全面展示了数据科学工作流程,从项目管理到部署。它为数据科学家和机器学习工程师提供了提高效率、构建可靠项目的实用指南。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号