Project Icon

TabFormer

用于对多变量时间序列进行建模的表格转换器

该项目提供了用Pytorch实现的Tabular Transformers源代码和数据,可用于多变量时间序列建模。项目特点包括层级变压器模块、综合信用卡交易数据集、改进的自适应Softmax和为表格数据调整的DataCollatorForLanguageModeling模块。代码架构基于HuggingFace的transformers框架,拥有很好的扩展性和易用性。

GameFormer - 结合游戏理论的自动驾驶交互预测规划模型
GameFormerGithubTransformer交互预测开源项目自动驾驶规划
GameFormer是一个创新的自动驾驶AI项目,结合游戏理论和Transformer架构进行交互式预测和规划。项目提供Waymo开放运动数据集上的交互预测联合模型代码,以及动态场景的开环规划实现。GameFormer提高了预测准确性和自动驾驶系统的决策能力,为智能交通系统研究开辟新方向。
LLFormer - 高效处理超高清低光照图像的Transformer模型
AAAIGithubTransformer低光照图像增强开源项目超高清
LLFormer是一种新型Transformer模型,专门用于增强超高清低光照图像。通过创新的轴向多头自注意力和跨层注意力融合机制,LLFormer能高效处理4K和8K分辨率图像。在UHDLOL基准测试中,该模型性能显著优于现有方法。LLFormer不仅提升了图像质量,还能改善低光照条件下人脸检测等下游任务的效果。
simple-hierarchical-transformer - 分层Transformer模型探索多层次预测编码
GithubTransformer开源项目注意力机制深度学习神经网络自然语言处理
这个项目提出了一种在GPT模型中实现多层次预测编码的方法。它通过在Transformer中引入多层结构,结合局部注意力和全局信息传递。实验结果显示,该方法在维持性能的同时提升了效率。项目允许自定义层次结构、维度和注意力窗口大小,为研究人员提供了探索分层Transformer的实验工具。项目代码支持灵活配置,包括调整层次数量、模型维度和注意力窗口大小。这种设计使研究人员能够方便地进行不同参数的对比实验,有助于深入理解分层Transformer的性能特点。
equiformer-pytorch - SE(3)/E(3)等变注意力网络的高效PyTorch实现
AIEquiformerGATv2GithubSE3 Transformers开源项目深度学习
Equiformer-pytorch是一个基于PyTorch的SE(3)/E(3)等变注意力网络实现。该项目采用MLP注意力机制和非线性消息传递,实现了最先进的性能。它支持可逆网络以提高内存效率,并集成了最新的球谐函数稀疏化技术,大幅提升计算效率。Equiformer-pytorch还提供边缘和邻接矩阵支持,适用于蛋白质折叠等各种3D原子图任务。
Tablize - 智能电子表格工具助力数据分析和可视化
AI工具Tablize实时更新数据分析电子表格自动化计算
Tablize是一款智能电子表格工具,可将数据转化为仪表盘等多种形式。它支持连接电子表格、数据库和API等数据源,提供强大的公式面板功能。Tablize实现实时数据同步,用户可在各种设备上获得即时洞察。该工具简化了复杂的Excel计算,如跨表匹配,提高工作效率。Tablize在简化数据处理、提高工作效率方面获得了广泛好评。
ByteTransformer - 为BERT类Transformer优化的高性能推理库
BERTByteTransformerGithubNVIDIA GPUTransformer开源项目高性能
ByteTransformer是一个为BERT类Transformer优化的高性能推理库,支持Python和C++ API,兼容固定长度和可变长度Transformer。通过对BERT例程中的QKV编码、软最大值、前馈网络、激活、层归一化和多头注意力机制进行优化,ByteTransformer为字节跳动的内部推理系统提升了性能。基准测试结果显示,相较于PyTorch、TensorFlow、FasterTransformer和DeepSpeed,ByteTransformer在A100 GPU上的推理速度更快。
mint - 从零构建Transformer模型的详细教程和实现
BERTGithubHuggingFaceMinTPyTorchTransformer开源项目
该项目提供了一系列循序渐进的教程,指导从零开始构建常见的Transformer模型,如BERT、GPT、GPT2、BART和T5。教程不仅讲解基本架构的实现,还包括预训练和微调示例,并提供小型PyTorch库以便额外使用。项目依赖HuggingFace的tokenizers库进行子词标记,适用于不同规模数据集的训练需求,还涵盖了多工作节点的分布式训练示例,非常适合希望深入了解Transformer模型原理和应用的学习者。
transformers-interpret - 快速解读Transformer模型的工具,只需2行代码
GithubTransformers Interprettransformers可视化开源项目文本分类解释工具
Transformers-interpret是一款为Transformer模型设计的解释工具,只需简单代码即可实现。支持文本和计算机视觉模型,并可在笔记本中展示或保存为PNG和HTML文件。通过导入预训练模型和tokenizer,用户能快速获得预测分类解释,并提供可视化功能。此项目基于Captum库构建,支持多标签分类等功能,帮助开发者深入理解模型决策。
FinGPT - 开源金融大模型FinGPT,快速适应市场变化
FinGPTGithub开源项目情感分析指令调优数据集金融大语言模型
FinGPT项目提供开源金融大语言模型,重点解决金融行业的高训练成本和频繁更新需求。利用RLHF技术,实现了金融数据的快速更新和轻量级适配,并降低微调费用。FinGPT-Forecaster和多任务情感分析模型的性能超过GPT-4,展现出在金融预测和情感分析方面的强大能力。开源平台和丰富的数据集使开发者能够轻松再现和应用这些先进模型。
h-transformer-1d - 高效序列学习的分层注意力变换器实现
GithubH-Transformer-1DTransformer序列学习开源项目神经网络长程注意力
H-Transformer-1D是一个开源项目,实现了基于分层注意力机制的Transformer模型。这种实现使序列学习达到亚二次方复杂度,在Long Range Arena基准测试中表现优异。项目支持可变序列长度、可逆性和令牌移位等功能,适用于长序列数据处理。该实现主要提供编码器(非自回归)版本,为自然语言处理和机器学习领域提供了新的研究方向。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号