Project Icon

atomic-agents

基于原子设计理念的AI多智能体开发框架

Atomic Agents框架采用模块化设计,便于扩展和使用。它基于原子设计理念,强调组件的单一功能和可重用性。框架集成了Instructor和Pydantic,支持多种语言模型API。开发者可利用其工具和代理快速构建AI应用,适用于不同开发环境。项目提供详细文档和示例,持续接受社区贡献以促进功能完善。

Atomic Agents

Atomic Agents

PyPI version

Philosophy

The Atomic Agents framework is designed to be modular, extensible, and easy to use. Components in the Atomic Agents Framework should always be as small and single-purpose as possible, similar to design system components in Atomic Design. Even though Atomic Design cannot be directly applied to AI agent architecture, a lot of ideas were taken from it. The resulting framework provides a set of tools and agents that can be combined to create powerful applications. The framework is built on top of Instructor and leverages the power of Pydantic for data validation and serialization.

A more detailed deep-dive article can be found on Medium

Atomic Agents Architecture What is sent to the LLM in the prompt?

Installation

To install Atomic Agents, you can use pip:

pip install atomic-agents

Alternatively, for local development, to install the necessary dependencies from the repository, run the following commands in the root of the repository:

python -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate.bat`
pip install -r requirements.txt
pip install -e .

Quickstart

A quickstart guide is available in the quickstart notebook. More guides and tutorials will be added soon! In the meanwhile, have a look at the other examples in the examples directory.

Usage examples & Docs

open source docs bad

While we do our best to provide excellent documentation, we are aware that it is not perfect. If you see anything missing or anything that could be improved, please don't hesitate to open an issue or a pull request.

Examples

All examples can be found in the examples directory. We do our best to thoroughly document each example, but if something is unclear, please don't hesitate to open an issue or a pull request in order to improve the documentation.

Docs

The documentation can be found in the docs directory. Here you will find both API documentation and some general guides such as How to create a new tool.

Instructor & Model Compatibility

Atomic Agents depends on the Instructor package. This means that in all examples where OpenAI is used, any other API supported by Instructor can be used, such as Cohere, Anthropic, Gemini, and more. For a complete list please refer to the instructor documentation on its GitHub page.

Additionally, Atomic Agents should work with Ollama or LMStudio. If the default settings do not work due to your local server not supporting tool-calling, you can set the mode to JSON.

Formatting and Linting

To format & lint the code before committing, you must run the following two commands:

black atomic_agents

flake8 atomic_agents

Testing

To run the tests, run the following command: pytest --cov atomic_agents

To view the coverage report, run the following command: coverage html

Contributing

We welcome contributions! Please follow these steps to contribute:

  1. Fork the repository
  2. Create a new branch (git checkout -b feature-branch)
  3. Make your changes
  4. Commit your changes (git commit -m 'Add some feature')
  5. Push to the branch (git push origin feature-branch)
  6. Open a pull request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Star History

Star History Chart

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号