Project Icon

sentence-transformer-klue-temp

韩语句子转换模型的ColBERTv2实现方案

hunkim/sentence-transformer-klue模型的ColBERTv2优化实现,通过问题、相关文档和不相关文档的三元组进行训练,使用2-4个文档块进行分割学习和索引。模型在训练过程中采用随机抽取不相关文档的方式,可能导致每次训练的性能存在细微差异。主要应用于韩语自然语言处理中的句子相似度匹配任务。

distilbert-multilingual-nli-stsb-quora-ranking - DistilBERT多语言句子嵌入模型实现高效语义搜索和相似度计算
GithubHuggingfacesentence-transformers向量嵌入多语言模型开源项目模型自然语言处理语义相似度
这是一个基于DistilBERT的多语言句子嵌入模型,能将文本映射到768维向量空间。模型经NLI、STS-B和Quora数据集训练,支持多语言处理,适用于语义搜索、相似度计算和文本聚类等任务。通过sentence-transformers或Hugging Face Transformers,开发者可轻松将其集成到各类自然语言处理应用中,实现高效的文本分析和处理。
llama-2-ko-7b - 韩语文本生成模型与优化的词汇扩展
GithubHuggingfaceLlama-2-Kohuggingface开源项目文本生成机器学习模型韩语模型
Llama-2-Ko是基于Llama-2的语言模型,使用韩语语料库进行预训练,增强了文本生成功能。该模型提供从7B到70B参数的版本,尤其7B版本适配Hugging Face Transformers。Llama-2-Ko优化了变压器结构,增加了韩语词汇,有效生成高质量文本。项目由Junbum Lee领导,支持多参数与微调版本,应用广泛。
KULLM3 - 高性能韩语指令跟踪与对话模型
GithubHuggingfaceKULLM3NLP&AI Labtransformers开源项目模型语言模型韩国大学
KULLM3是由NLP&AI Lab开发的语言模型,专注于韩语的指令跟随和流畅对话。基于upstage/SOLAR-10.7B-v1.0优化训练,适用于多种场景。利用66000多个训练样例,KULLM3在仿效GPT-3.5-turbo指令方面表现突出。在符合道德和法律标准的前提下提供自然互动,适合研究和商业用途。采用Apache 2.0许可,开放源码,详情可参阅KULLM的GitHub页面。
KR-ELECTRA-generator - 韩语预训练模型专注提升非正式文本处理能力
GithubHuggingfaceKR-ELECTRA开源项目机器学习模型深度学习自然语言处理韩语模型
KR-ELECTRA是首尔国立大学开发的韩语ELECTRA模型,专注提升非正式文本处理能力。该模型使用34GB平衡的书面和口语韩语数据预训练,采用30,000个基于形态素的词汇。KR-ELECTRA在多项韩语NLP任务中表现卓越,尤其在非正式文本相关任务上效果显著。模型支持TensorFlow和PyTorch框架,为韩语自然语言处理研究提供了有力工具。
paraphrase-multilingual-MiniLM-L12-v2 - 多语言句子相似性和语义聚类的高效工具
BERT模型GithubHuggingfacesentence-transformers开源项目模型特征提取语义搜索语句相似性
paraphrase-multilingual-MiniLM-L12-v2模型是sentence-transformers框架的一部分,能够将句子转换为384维的密集向量。该模型支持多语言功能,适合进行句子聚类和语义搜索,并能通过HuggingFace Transformers应用。在此模型的优化下,您可在多语言环境(如法语、葡萄牙语、中文)中高效实现句子相似性比较和特征提取,并利用其简便的安装和使用过程提升操作效率。
kobart-base-v2 - 基于BART的韩文特征提取模型
GithubHuggingfaceKoBART开源项目模型特征提取编码器解码器语言模型韩语
该项目利用BART模型的Text Infilling技术进行训练,生成了一种高效的韩文特征提取模型。KoBART-base利用超过40GB的多样化韩文数据进行训练,适用于特征提取任务。注意模型可能存在的偏见和局限性,避免在不当环境中使用。项目包含GitHub仓库和模型演示空间,便于用户深入了解和使用。
polyglot-ko-3.8b - 韩国大规模自回归语言模型的技术突破
EleutherAIGithubHuggingfacePolyglot-KoRoPE位置编码开源项目模型自动回归模型韩国语言模型
Polyglot-Ko-3.8B是一个由EleutherAI开发的韩国大型自回归语言模型,具有3.8B参数和32个Transformer层,采用Rotary位置编码。模型在超过863GB的韩语数据集上训练,但不对公众开放,并在训练中屏蔽了个人信息,以防止生成个人识别数据。Polyglot-Ko-3.8B在COPA和HellaSwag任务中表现优异。此模型可在GPT-NeoX框架中使用,适合多种语言处理任务,但建议在使用时对潜在敏感内容进行人类审核。
KoBigBird - 支持长序列处理的韩语预训练模型
GithubKoBigBird开源项目自然语言处理长序列处理韩语预训练模型
KoBigBird是基于BigBird架构的韩语预训练模型,支持处理长达4096个token的序列。通过稀疏注意力机制,其计算复杂度从O(n²)降至O(n)。在短序列和长序列任务评估中,KoBigBird表现优异。项目包含使用指南、预训练方法和评估结果,为韩语自然语言处理提供支持。
ko-gpt-trinity-1.2B-v0.5 - SK电信开发的1.2B参数韩语语言模型Ko-GPT-Trinity
GPT-3GithubHuggingface人工智能开源项目机器学习模型自然语言处理韩语模型
Ko-GPT-Trinity 1.2B是SK电信基于GPT-3架构开发的12亿参数韩语语言模型。该模型在Ko-DAT数据集上训练了350亿个标记,主要用于韩语文本的生成、分类、搜索和摘要。在推理和语言理解方面表现优异,但对非韩语输入效果较差。模型存在一定偏见和局限性,包括高方差性和可解释性有限,使用时需注意这些特点。
nq-distilbert-base-v1 - 句子向量化提升语义搜索与聚类效率
GithubHuggingfaceTransformersentence-transformers句子嵌入句子相似度开源项目模型模型评估
nq-distilbert-base-v1模型以sentence-transformers为基础,将句子和段落转换为768维向量,以支持聚类和语义搜索任务。通过安装sentence-transformers库可轻松使用,具备丰富的使用选项,包括通过HuggingFace Transformers实现上下文嵌入和均值池化等应用,广泛适用于文本相似性评估、内容聚类和语义检索等自然语言处理任务,提供可靠性能与灵活应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号