Project Icon

MAPE-PPI

基于微环境感知的蛋白质相互作用预测新方法

MAPE-PPI项目开发了一种基于微环境感知蛋白质嵌入的方法,用于预测蛋白质-蛋白质相互作用。该方法在多个数据集上进行了测试,显示出良好的性能。项目提供预训练模型和使用指南,涵盖环境设置、数据处理和模型训练等内容,便于研究人员复现和拓展。这一新方法为蛋白质相互作用预测研究提供了创新思路。

awesome-bioie - 免费工具和方法助力提取非结构化生物医学数据中的信息
BERTBioIEGithubLLMs开源项目生物医学数据自然语言处理
这个开源项目提供了一系列无需付费且许可要求低的资源,旨在从非结构化生物医学数据和文本中提取结构化信息。随着语言模型如BERT和GPT-4的引入,生物信息提取方法得到了显著优化。项目涵盖多个方面,包括研究概述、活跃群组、工具和数据集,所有资源均公开且积极维护。
PERSIA - 突破百万亿参数的推荐模型训练框架
GithubPERSIA大规模训练并行计算开源项目推荐系统深度学习
PERSIA代表'并行推荐训练系统与混合加速',是一个创新的开源框架,专为训练超大规模深度学习推荐模型而设计。该系统能够处理高达100万亿参数的模型,在效率和可扩展性方面表现卓越。PERSIA不仅在公共数据集上展现出优势,还在大型商业应用中得到实际验证。作为首个公开的PyTorch基础推荐训练系统,PERSIA为推荐算法的研究和应用开辟了新的可能性。
torchmd-net - 神经网络势能模型的高效训练与实现框架
GPU加速GithubPyTorchTorchMD-NET分子动力学开源项目神经网络势能
TorchMD-NET是一个先进的神经网络势能(NNP)模型框架,提供高效快速的NNP实现。该框架与ACEMD、OpenMM和TorchMD等GPU加速分子动力学代码集成,并将NNP作为PyTorch模块提供。项目支持等变Transformer、Transformer、图神经网络和TensorNet等多种架构,可通过conda-forge安装或从源代码构建。TorchMD-NET具有灵活的训练配置选项,支持自定义数据集和多节点训练,并提供预训练模型。
Prevess - 营养与健康建议智能API服务
AI工具API集成Prevess个性化服务健康推荐营养建议
Prevess是一个人工智能驱动的营养和健康建议API平台。它结合科研成果和用户数据,为医疗、健身和营养行业提供可扩展的个性化服务。平台API集成简便,有助于提升用户留存。Prevess的知识库涵盖5000多篇精选论文,支持定制需求,并能分析可穿戴设备、实验室检测和用户反馈等多源数据,为个人健康提供全面评估和建议。
EasyTemporalPointProcess - 灵活可配置的时序点过程开源工具包 支持多框架和结果复现
EasyTPPGithub事件预测开源工具包开源项目时间点过程机器学习
EasyTemporalPointProcess是一个用于时序点过程开发和应用的开源工具包。该工具包具有配置灵活、兼容性强和结果可复现等特点,支持多种先进TPP模型,提供预处理数据集和超参数优化功能。EasyTPP同时兼容TensorFlow和PyTorch框架,可用于学术研究和工业实践。研究人员和从业者可以利用它轻松定制TPP模型并进行开放基准测试。
MiniCPM - 轻量级大语言模型实现高性能端侧部署
GithubMiniCPM多模态开源模型开源项目模型量化端侧大语言模型
MiniCPM是一系列高效的端侧大语言模型,仅有2.4B非词嵌入参数。经过优化后,在多项评测中表现优异,甚至超越了一些参数量更大的模型。该项目支持多模态功能,可在移动设备上流畅运行。MiniCPM开源了多个版本,涵盖文本、多模态、量化和长文本等应用场景,适用于学术研究和特定商业用途。这一开源项目由面壁智能与清华大学自然语言处理实验室联合开发。
data-to-paper - 涵盖从原始数据到透明且可追溯的科学论文的全过程的AI研究框架
GithubLLMdata-to-paper可追溯性开源项目科研透明性
data-to-paper项目是一个完整的AI驱动研究框架,涵盖从原始数据到透明且可追溯的科学论文的全过程。该项目指导每一步科学研究,包括数据注释、假设生成、文献搜索、数据分析、结果解释和论文撰写。通过引入人类互动,确保手稿的追溯性和科学价值。本平台适用于各种研究领域,支持开放和特定目标的研究模式,并提供用户互动的GUI应用。
DNABERT_2 - 多物种基因组理解基础模型
DNABERT-2Github人工智能基因组开源项目深度学习生物信息学
DNABERT-2是一个针对多物种基因组理解的高效基础模型。该模型在28个GUE基准任务中表现优异,采用BPE替代k-mer标记化,ALiBi代替位置嵌入,并整合多项技术提升效率。DNABERT-2为基因组分析提供了强大工具,可用于序列分类、元素识别和功能预测等多种任务。
ipex-llm - 在Intel CPU和GPU上运行大型语言模型(LLM)的高性能库
AIGithubIPEX-LLMLLM运行库PyTorch开源项目英特尔
IPEX-LLM是专为Intel CPU和GPU设计的PyTorch库,能高效运行多种大型语言模型如LLaMA2和Mistral,确保极低延迟。支持最新技术如Microsoft的GraphRAG和多模态模型,及英特尔新型NPU。提供一体化易用性并针对多GPU优化,包括实时演示和详尽的性能基准。
micro_diffusion - 低成本训练大规模扩散模型的开源方案
Githubdiffusion models低成本大规模模型开源开源项目模型训练
micro_diffusion是一个开源项目,旨在提供低成本训练大规模扩散模型的方法。该项目计划发布完整训练代码和模型检查点,为研究人员和AI爱好者提供实验资源。通过降低研究门槛,micro_diffusion有望促进扩散模型领域的广泛参与和创新。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号