Project Icon

text2vec-base-chinese-rag

基于CoSENT框架的中文RAG文本嵌入模型

text2vec-base-chinese-rag采用CoSENT训练框架构建,专注于中文文本理解和RAG任务。模型支持文本相似度计算,集成Langchain和FAISS向量存储功能,实现高效文档检索。项目提供自定义LLM的RAG实现示例,便于开发者快速应用和扩展。

ragas - 高效评估与优化RAG管道性能的框架
GithubLLMRAGRagas开源项目性能监控评估框架
Ragas是一款工具集,用于评估、监控和优化RAG(检索增强生成)应用的性能,特别适合生产环境中的大语言模型(LLM)。Ragas集成了最新研究成果,能在CI/CD流程中进行持续检查,确保管道性能稳定。通过简单的安装和快速入门示例,用户可以快速体验Ragas的功能,并参与社区讨论LLM和生产相关问题。
Easy-RAG - 构建高效RAG系统 集成多功能知识库和先进对话能力
Easy-RAGGithub向量数据库大模型聊天开源项目知识图谱知识库
Easy-RAG是一个功能全面的检索增强生成(RAG)系统,支持多种文件格式的知识库管理。系统整合了Chroma、FAISS等向量数据库,并采用rerank技术提高信息检索效率。它具备纯大模型多轮对话和基于知识库的问答能力,适合学习、使用和自主扩展。Easy-RAG还支持音频视频的语音转文本功能,为构建智能对话系统提供了全面的解决方案。
graphrag - 提升文本数据结构化处理能力的先进工具
AI生图GithubGraphRAGLLMs开源项目数据管道热门知识图谱隐私数据
GraphRAG是一个革新的数据管道和转换套件,旨在利用大型语言模型(LLMs)的力量从非结构化文本中提取有意义的结构化数据。该项目通过加快索引过程并优化提示调整,提供在Azure上的端到端用户体验,有效增强LLMs处理私有数据的能力。此外,GraphRAG的研究和开发还专注于推动负责任的AI使用,确保用户能够最大限度地发挥系统的潜力并减少限制的影响。
local-rag - 开源离线增强生成系统,支持多源数据和流式响应
GithubLLMs支持Local RAG开源软件开源项目数据安全离线嵌入
Local RAG是一个开源离线增强生成工具,旨在无需第三方依赖即可处理多种数据源(包含本地文件、GitHub仓库与网站)。该系统通过集成大型语言模型安全高效地处理数据,支持离线嵌入技术、流式数据响应、会话历史记忆和会话数据导出,尤其适合对隐私要求高的使用环境。
BCEmbedding - 双语跨语言嵌入模型提升检索增强生成效果
BCEmbeddingGithubRAG双语开源项目语义表示跨语言
BCEmbedding是一款双语和跨语言嵌入模型,针对检索增强生成(RAG)任务进行优化。该模型包含EmbeddingModel和RerankerModel两个组件,分别用于语义向量生成和搜索结果优化。BCEmbedding在中英文语义表示和RAG评估中展现出优异性能,支持多语言和多领域应用。该项目提供了便捷的API接口,可直接集成到RAG系统中,已在实际产品中得到应用验证。
RAGFoundry - 开源框架增强大语言模型检索能力
GithubRAG Foundry大语言模型开源项目数据集创建检索增强生成模型微调
RAG Foundry是一个开源框架,通过RAG增强数据集微调模型来提升大语言模型的外部信息检索能力。该框架包含数据集创建、模型训练、推理和评估四个模块,支持快速原型设计和RAG实验。其模块化设计和可定制工作流程,有助于研究人员和开发者高效改进LLM的检索增强生成能力。
text2vec-base-chinese - 基于LERT的中文句子相似度模型
Apache-2.0GithubHuggingfacetext2vectransformers句子相似度开源项目模型语言模型
text2vec-base-chinese 是一个中文自然语言处理模型,通过将MacBERT替换为LERT实现改进,用于提升句子相似度计算的精确性。该项目在保持其他训练条件不变的情况下,确保了模型性能的稳定性,对需要进行高效特征提取和相似度计算的用户尤其有帮助。2024年6月25日,该项目的onnxruntime版本已发布,以支持更广泛的应用,让开发者能够更高效地构建智能应用。
super-rag - 提升AI应用性能的高效RAG流水线工具
GithubREST APISuper-Rag云端API人工智能开源项目文档处理
Super-Rag为AI应用提供了支持多种文档格式与向量数据库的高效RAG流水线。包含生产就绪REST API,支持自定义数据分割,多种编码模式,及代码解释器模式,适于解决计算性问题与答疑,并通过唯一ID高效进行会话管理。
graph-rag - 自动生成知识图谱和文档网络以增强RAG性能
GithubKnowledge Graph RAGRAG开源项目搜索文档网络知识图谱
graph-rag项目旨在提升检索增强生成(RAG)的性能。它自动从文档中提取实体和关系,构建知识图谱和文档关联网络。这些图谱可用于搜索相关实体或查找相互关联的文档,增强大型语言模型的上下文信息。该项目在处理医疗等专业领域文档时尤为有效,能提高信息检索和知识推理效率。
text2vec - R语言高效文本分析与NLP框架
GithubR软件包text2vec开源项目文本分析自然语言处理高性能计算
text2vec是一个R语言包,为文本分析和自然语言处理提供高效框架和简洁API。该包以C++编写,支持多线程并行处理,具有优秀性能和可扩展性。text2vec提供流式API,无需将全部数据加载到内存。它注重简洁、一致、灵活、快速和内存效率,是文本处理的理想工具。text2vec可用于文本向量化、主题建模、情感分析等任务,为研究人员和数据科学家提供强大的文本处理工具。该项目欢迎社区贡献,包括测试反馈和代码改进。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号