Project Icon

text2vec-base-chinese-rag

基于CoSENT框架的中文RAG文本嵌入模型

text2vec-base-chinese-rag采用CoSENT训练框架构建,专注于中文文本理解和RAG任务。模型支持文本相似度计算,集成Langchain和FAISS向量存储功能,实现高效文档检索。项目提供自定义LLM的RAG实现示例,便于开发者快速应用和扩展。

self-rag - 通过自反学习使语言模型实现按需检索、生成和评估的框架
GithubSelf-RAG关键词生成开源项目检索增强生成自我反思语言模型
Self-RAG是一种创新框架,通过自反学习使语言模型实现按需检索、生成和评估。该方法预测反思标记,支持多次检索或跳过检索,并从多角度评估生成内容。这不仅提高了模型输出的事实性和质量,还保持了语言模型的通用性能。
renumics-rag - 使用Renumics RAG进行检索增强生成数据的探索和可视化
GithubLangChainOpenAIPoetryRenumics RAGStreamlit开源项目
Renumics RAG项目使用LangChain和Streamlit实现检索增强生成助手。通过简单的虚拟环境配置,支持GPU和CPU用户可以快速安装相关依赖项。提供对HTML文件的文档索引和通过命令行或Web应用进行文档检索和问题解答的功能。支持OpenAI、Hugging Face模型的集成,并能使用Renumics Spotlight进行数据的交互式探索,帮助用户了解RAG系统的性能与数据分布。
rag-using-langchain-amazon-bedrock-and-opensearch - 基于Amazon Bedrock和OpenSearch构建检索增强生成系统
Amazon BedrockGithubLangChainOpenSearchRAGTitan开源项目
这个开源项目展示了如何使用Amazon Bedrock的Titan模型和OpenSearch的向量引擎来构建检索增强生成(RAG)系统。项目利用LangChain框架将嵌入文本存储在OpenSearch中,为语言模型提供更精准的上下文。开发者可以选择Amazon Bedrock提供的多种基础模型,包括Anthropic Claude和AI21 Labs的Jurassic系列。项目文档详细介绍了从OpenSearch集群部署到数据加载和查询的全过程,为有意实践RAG技术的开发者提供了完整的参考。
HippoRAG - 大型语言模型的神经生物学启发长期记忆框架
GithubHippoRAGRAG大语言模型开源项目神经生物学长期记忆
HippoRAG是一个借鉴人类长期记忆神经生物学原理的检索增强生成(RAG)框架。它能让大型语言模型持续整合外部文档知识,以较低的计算成本实现通常需要昂贵迭代LLM管道才能达成的功能。该框架兼容ColBERTv2和Contriever等检索模型,还可与IRCoT结合获得互补效果。HippoRAG为大型语言模型提供了一种高效的长期记忆解决方案,在提升模型性能的同时降低了计算资源需求。
text2vec - 多模型文本向量化工具,支持多语言文本匹配分析
BERTGithubText2vec开源项目文本向量化文本相似度模型训练
text2vec工具实现了多种文本向量表示和相似度计算模型,如Word2Vec、BERT、Sentence-BERT和CoSENT。最新版本增加了多卡推理和命令行工具,方便用户批量处理文本向量化。它在中英文测试集上的表现优秀,尤其新版中文匹配模型在短文本区分上有显著提升。该工具为中文和多语言文本匹配提供了丰富的支持,能够满足各种文本语义分析任务的需求。
RAG - 优化检索增强生成技术的最佳实践探索
GithubRAGGA开源项目最佳实践检索增强生成深度学习论文实现
RAGGA是一个实现检索增强生成(RAG)技术最佳实践的开源项目。基于论文研究,项目提供RAG系统性能优化方法和策略,包含代码实现和复现指南。RAGGA通过实验验证了多种RAG技术优化策略,包括检索方法改进、上下文融合等。这些发现对于提升自然语言处理任务的性能具有重要意义,为RAG技术研究和应用提供了重要参考资源。
Awesome-LLM-RAG - LLM检索增强生成技术最新研究与应用
Awesome-LLM-RAGGithubLLMRAG大语言模型开源项目检索增强生成
本项目汇集了最新的LLM检索增强生成(RAG)技术研究论文,包括RAG指令调优、上下文学习、嵌入、模拟、搜索、长文本与记忆、评估、优化及应用等方面。资源库为研究者提供全面参考,鼓励研究成果的提交与共享,促进RAG技术发展。
rag-stack - 基于RAG技术的企业级智能问答平台
GithubRAGstack企业知识库向量数据库开源LLM开源项目检索增强生成
RAGstack是一个基于检索增强生成(RAG)技术的企业级智能问答平台。该项目支持Llama 2、Falcon和GPT4All等开源大语言模型,利用Qdrant向量数据库实现高效文档检索。RAGstack提供简洁的服务器和用户界面,支持PDF文档上传和智能问答。系统可在本地运行,也可轻松部署到各大主流云平台,为企业提供安全可控的私有化知识问答解决方案。
ragapp - 简单配置的企业级Agentic RAG方案
DockerGithubLlamaIndexOpenAIRAGapp云基础设施开源项目
RAGapp是一款企业级Agentic RAG解决方案,配置简单如OpenAI的自定义GPT,可通过Docker部署在云基础设施中。基于LlamaIndex构建,支持OpenAI和Gemini托管AI模型以及本地Ollama模型。提供Docker Compose和即将推出的Kubernetes部署选项。访问Admin UI进行配置,详情请参阅各端点和安全信息。
rags - 使用自然语言从数据源创建RAG管道
GithubOpenAIRAGsStreamlit开源项目数据管道自然语言处理
RAGs是一个基于Streamlit的应用程序,使用自然语言从数据源创建RAG管道。用户可以描述任务和参数,查看和修改生成的参数,并通过RAG代理查询数据。项目支持多种LLM和嵌入模型,默认使用OpenAI构建代理。该应用程序提供了一个标准的聊天界面,能够通过Top-K向量搜索或总结功能满足查询需求。了解更多关于安装和配置的信息,请访问GitHub页面或加入Discord社区。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号