Project Icon

RADIO

通过多模型融合提升性能的通用视觉基础模型

AM-RADIO是一个将多个大型视觉基础模型蒸馏为单一模型的框架。其核心产物RADIO作为新一代视觉基础模型,在多个视觉任务中表现优异,可作为通用视觉骨干网络使用。RADIO通过蒸馏整合了CLIP、DINOv2和SAM等模型,保留了文本定位和分割对应等特性。在ImageNet零样本分类、kNN和线性探测分割等任务上,RADIO超越了教师模型,同时提升了视觉语言模型的性能。此外,RADIO支持任意分辨率和非方形图像输入,并提供了名为E-RADIO的高效变体。

GLEE - 实现多任务图像和视频处理的通用视觉基础模型
GLEEGithub多任务模型实例分割开源项目目标检测计算机视觉
GLEE是一个通用对象基础模型,在超过1000万张来自多个数据集的图像上进行联合训练。该模型能同时处理多种以对象为中心的视觉任务,并在多个基准测试中保持领先性能。GLEE具有出色的通用性和零样本迁移能力,可作为增强其他架构或模型的基础组件。这项研究被CVPR2024接受为亮点论文,研究团队计划开源相关代码和预训练模型。
ml-aim - 自回归图像模型预训练的突破性进展
AIMGithub图像特征大规模模型开源项目自回归图像模型预训练
AIM项目开发了一系列采用自回归生成目标预训练的视觉模型。研究发现,图像特征的自回归预训练呈现出与大型语言模型类似的扩展性。该项目能够将模型参数轻松扩展到数十亿级,并能有效处理大规模未筛选的图像数据。AIM提供多种预训练模型,兼容PyTorch、MLX和JAX等多个框架,为计算机视觉领域的研究与应用提供了有力支持。
Grounding-DINO-1.5-API - 先进的开放集目标检测模型系列
GithubGrounding DINO 1.5IDEA Research少样本学习开源项目目标检测零样本迁移
Grounding DINO 1.5是IDEA Research开发的开放集目标检测模型套件,包括专业版和边缘版两个模型。项目提供模型使用示例,模型托管于DeepDataSpace平台。Grounding DINO 1.5 Pro在COCO、LVIS等多个零样本迁移基准测试中性能领先,并在ODinW少样本设置下创造新纪录。该模型在广泛场景中展现出强大泛化能力,推动了开放集目标检测的发展。
dinov2-base - 基于Vision Transformer的自监督视觉特征学习模型
DINOv2GithubHuggingfaceVision Transformer图像处理开源项目模型特征提取自监督学习
DINOv2-base是Facebook AI研究团队开发的基于Vision Transformer的自监督视觉模型。该模型在大规模图像数据集上预训练,无需标注数据即可学习强大的视觉特征表示。DINOv2-base可应用于图像分类、目标检测等多种视觉任务,支持直接特征提取或针对特定任务进行微调。作为开源项目,它为计算机视觉研究和应用提供了灵活而有力的基础。
CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup - CLIP ConvNeXt-XXLarge模型在零样本图像分类上的卓越性能
CLIPConvNeXtGithubHuggingface开源项目模型深度学习计算机视觉零样本图像分类
CLIP ConvNeXt-XXLarge是基于LAION-2B数据集训练的大规模视觉-语言模型。它在ImageNet零样本分类任务中实现79.4%的准确率,成为首个非ViT架构突破79%的CLIP模型。该模型结合847M参数的ConvNeXt-XXLarge图像塔和ViT-H-14规模的文本塔,在计算效率和性能间达到平衡,为视觉-语言模型研究开辟新方向。
BiomedCLIP-PubMedBERT_256-vit_base_patch16_224 - 基于PubMedBERT的生物医学视觉语言基础模型
BiomedCLIPGithubHuggingfacePubMedBERT图像分类开源项目模型生物医学视觉语言处理
BiomedCLIP是一个生物医学视觉语言基础模型,集成了PubMedBERT和Vision Transformer技术。该模型通过1500万医学图像-文本对的预训练,能够执行跨模态检索和图像分类等任务。在多个标准数据集上,BiomedCLIP显著提升了性能基准。这一模型为生物医学视觉语言处理研究奠定了坚实基础,在放射学等领域具有广泛应用前景。
DFN5B-CLIP-ViT-H-14-378 - 大规模数据筛选优化的视觉语言预训练系统
CLIPGithubHuggingface图像分类开源项目数据过滤网络机器学习模型计算机视觉
DFN5B-CLIP-ViT-H-14-378是一款基于CLIP架构的视觉语言模型,采用数据过滤网络(DFN)技术从43B未筛选的图像-文本对中提取5B高质量数据进行训练。该模型在多项视觉任务中表现优异,平均准确率达70.94%。支持零样本图像分类,可与OpenCLIP框架无缝集成,为计算机视觉和自然语言处理研究提供了高性能的预训练模型基础。
open_clip - 探索前沿图像与语言对比预训练技术
GithubOpenCLIP图像识别对比学习开源项目零样本学习预训练模型
OpenCLIP是一个先进的开源深度学习项目,专注于OpenAI的CLIP模型的实现和优化。该项目在多样化的数据源和不同的计算预算下成功训练出多个高效能模型,涵盖图像和文本嵌入、模型微调及新模型开发等多个领域。通过增强图像与语言的联合理解能力,OpenCLIP显著推动了人工智能技术的发展,拓宽了其应用领域。
resnet50d.ra2_in1k - 基于ResNet-D架构的高效图像分类与特征提取模型
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习神经网络
ResNet-D是一款在ImageNet-1k数据集训练的图像分类模型,采用ReLU激活函数和三层卷积结构,包含2560万参数。模型支持224x224尺寸训练输入和288x288测试输入,集成RandAugment增强技术,可实现图像分类、特征提取等计算机视觉任务。
dinov2-large - 基于Vision Transformer的大规模自监督视觉特征学习模型
DINOv2GithubHuggingfaceVision Transformer图像处理开源项目模型特征提取自监督学习
DINOv2-large是基于Vision Transformer架构的大规模视觉模型,采用自监督学习方法训练。该模型能从海量未标注图像中学习视觉特征表示,适用于多种下游视觉任务。它将图像转换为固定大小的patch序列输入Transformer编码器,提取高质量特征。研究人员可直接使用其预训练编码器进行特征提取,或针对特定任务进行微调,体现了模型的通用性和灵活性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号