Project Icon

cail2019

法律AI挑战赛 基础BERT到多任务学习的模型进化

本文记录了CAIL2019法律智能挑战赛的参赛历程。从基础BERT模型出发,逐步优化YES/NO问题和未知答案处理策略,最终发展为多任务学习的端到端模型。文章分析了数据集特点、模型迭代过程和技术难点,展示了AI竞赛中如何通过持续改进提升模型效果。

law-cn-ai - 通过Next.js与OpenAI构建专属法律搜索系统的智能法律助手
AI法律助手GithubNext.jsOpenAISupabase开源项目构建时间热门
利用Next.js, OpenAI, 和Supabase打造具有专业水准的智能法律助手。该项目通过部署到Vercel,提供自动完成和向量相似性搜索功能,旨在提高在处理法律文档时的效率和精确度。适合律师、法律顾问及热衷技术的法律专业人士。
BertWithPretrained - 基于PyTorch实现的BERT模型及相关下游任务
BERTGithubPyTorchTransformer中文文本分类开源项目英文文本分类
该项目基于PyTorch实现了BERT模型及其相关下游任务,详细解释了BERT模型和每个任务的原理。项目支持分类、翻译、成对句子分类、多项选择、问答和命名实体识别等任务,涵盖中文和英语的自然语言处理。此外,项目还含有丰富的数据集和预训练模型配置文件。
quote-model-BERTm-v1 - BERT多语言模型在引用识别任务上的高性能微调应用
BERTGithubHuggingface多语言模型开源项目文本分类机器学习模型自然语言处理
quote-model-BERTm-v1是一个基于BERT多语言模型微调的引用识别工具。该模型在评估集上表现优异,准确率达93.14%,F1分数为0.8676。通过Adam优化器和线性学习率调度器,经过3轮训练而成。这一模型专门用于多语言环境下的高精度引用识别,可广泛应用于需要处理多语种文本引用的场景。
roberta-base-chinese-extractive-qa - 中文提取式问答模型简介与使用指南
GithubHuggingfaceRoBERTa开源项目提问回答普希金模型腾讯云训练数据
该项目提供了一种中文提取式问答的完整方案,通过UER-py和TencentPretrain进行模型微调,支持大规模参数和多模态预训练拓展。模型可通过UER-py或HuggingFace获取,便于快速部署问答管道。训练数据包括cmrc2018、webqa和laisi,旨在提高模型的语义理解能力,并在腾讯云上进行三轮训练以优化性能。项目还提供了详细指导,便于导入和转换模型格式,从而提高问答系统的精准性。
mobilebert-uncased-squad-v2 - MobileBERT轻量级问答模型在SQuAD v2上的应用
GithubHuggingfaceMobileBERTSQuAD开源项目机器学习模型自然语言处理问答系统
MobileBERT是一个在SQuAD v2数据集上微调的轻量级问答模型。模型体积仅95M,却在SQuAD v2评测中取得了75.2的EM和78.8的F1分数。通过Hugging Face框架可轻松部署,特别适合移动设备和边缘计算等需要高效问答功能的场景。
bert-base-uncased-finetuned-semeval24 - BERT微调模型在文本分类任务中的出色表现
F1GithubHuggingfacebert-base-uncased准确率开源项目损失模型精调
该微调模型基于google-bert/bert-base-uncased,采用Adam优化器和线性学习率调度策略,经过5个学习周期,在评估集合上取得了0.8254的准确率和0.8237的F1值,适用于需要精确度的文本分类任务。
distilbert-base-uncased-mnli - DistilBERT零样本文本分类模型在MNLI数据集上的应用
DistilBERTGithubHuggingface开源项目文本分类机器学习模型自然语言推理零样本分类
DistilBERT零样本文本分类模型在MNLI数据集上微调,适用于多种英语文本分类任务。模型在MNLI和MNLI-mm评估中均达82.0%准确率,展现出优秀性能。虽然使用简便,但需注意潜在偏见问题。模型由Typeform团队开发,在AWS EC2 P3实例上训练。该模型为自然语言处理领域提供了有力工具,同时也引发了对AI公平性的思考。
fuzi.mingcha - 基于深度学习的中文司法大模型
ChatGLMGithub人工智能司法大模型夫子明察开源项目法律咨询
夫子•明察是由山东大学、浪潮云和中国政法大学联合研发的中文司法大模型。基于ChatGLM,该模型通过海量司法语料和微调数据训练,具备法条检索、案例分析和三段论推理判决等功能。在LawBench评测中,夫子•明察在法律专精模型类别中表现优异。该模型旨在为法律从业者和普通用户提供权威、可靠的法律咨询和分析服务。
bert-base-uncased-ag-news - 基于BERT的文本序列分类模型
GithubHuggingfaceTextAttackag_news数据集bert-base-uncased序列分类开源项目模型精度
bert-base-uncased模型通过TextAttack和ag_news数据集进行微调,专为文本序列分类任务优化。经过5轮训练并采用交叉熵损失函数,该模型在第3轮时达到了0.951的高准确率。该模型设置批量大小为16,学习率为3e-05,最大序列长度为128,适用于高效准确的文本分类任务。了解更多信息请访问TextAttack的Github页面。
deberta-v3-large-squad2 - DeBERTa V3大规模模型设计,问答任务表现卓越
GithubHaystackHuggingfaceSQuAD 2.0deberta-v3-large开源项目提取式问答模型问答
该DeBERTa模型基于SQuAD2.0数据集进行了微调,专注于提取式问答任务。通过Haystack和Transformers框架的整合,模型在检索和匹配性能上表现优异,经多种数据集验证显示出高准确性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号