Project Icon

open-metric-learning

开源的PyTorch度量学习框架 支持多模态嵌入训练

open-metric-learning是一个基于PyTorch的开源度量学习框架,用于训练和验证高质量嵌入模型。它提供端到端流水线、实用案例和预训练模型库,支持图像和文本等多种模态。该框架具有统一的检索结果处理和评估方法,适用于人脸识别、商品搜索等嵌入学习任务。已被多家知名公司和机构采用,是一个功能丰富、易于上手的度量学习工具。

open-llms - 开放源代码大型语言模型及其商业应用全景解析
Apache 2.0GithubLarge Language Models商业使用许可开源开源项目模型发布
Open-llms 项目展示了众多采用开源许可证的大型语言模型(LLMs),支持商业应用,涵盖如T5、GPT-NeoX、YaLM等模型。每款模型设有详细说明及许可信息,鼓励社区交流与贡献,是机器学习研究和应用的重要资源库。
open_flamingo - 开源多任务视觉语言模型,支持图像文本生成和多模态训练
DeepMindGithubMultimodalOpenFlamingoPyTorchVision-Language Model开源项目
该项目提供了DeepMind Flamingo的PyTorch开源实现,用于训练和评估多任务视觉语言模型。OpenFlamingo处理多模态数据集,通过跨模态注意力层结合预训练视觉编码器和语言模型,实现图像和文本条件下的文本生成。用户可通过详细的安装和使用指南快速上手,并访问多个预训练模型和权重。项目欢迎社区贡献和反馈,支持多种语言和视觉编码器,适用于多种应用场景。
mmocr - 一个基于 PyTorch 和 mmdetection 的用于文本检测、文本识别以及相应的下游任务,包括关键信息提取的开源工具箱
GithubMMOCROpenMMLabPyTorch开源项目文本检测文本识别
MMOCR是一个基于PyTorch和mmdetection的开源工具箱,提供全面的文本检测、文本识别及信息提取解决方案。它支持多种先进模型和模块化设计,允许用户自定义优化器、数据预处理和模型组件。最新版本v1.0.0新增支持SCUT-CTW1500、SynthText和MJSynth数据集,更新了FAQ和文档,并添加了新教程笔记本。适用于PyTorch 1.6+,欢迎研究人员和开发者贡献改进。
similarity - 用于度量学习的库,支持自监督和对比学习
GithubTensorFlow Similarity对比学习度量学习开源项目相似性学习自监督学习
TensorFlow Similarity 是一个用于度量学习的库,支持自监督和对比学习。该库提供先进的算法,可用于研究、训练、评估和部署基于相似性和对比的模型,包含模型、损失函数、指标、采样器、可视化工具和索引子系统。最新版本支持分布式训练,增加了多模态嵌入和新的检索指标。可在未标记数据上进行预训练以提高准确性,或构建模型找到并聚类相似示例。了解更多请查看文档和示例。
lightly - 简单易用的自监督学习工具,支持自定义骨干模型和分布式训练
GithubLightlyPyTorch多模型支持开源项目自监督学习计算机视觉
这个开源项目提供简单易用的自监督学习工具,支持自定义骨干模型和分布式训练。通过模块化设计,用户可以自由调整损失函数和模型头。项目还提供商业版本,包含用于嵌入、分类、检测和分割任务的预训练模型。此外,平台集成了主动学习和数据策划功能,适用于大规模数据处理和强大算法的应用。
mmdetection3d - 支持多模态单模态的开源3D目标检测框架
3D目标检测GithubMMDetection3D开源工具箱开源项目点云处理计算机视觉
MMDetection3D是OpenMMLab项目开发的开源3D目标检测框架,基于PyTorch构建。它支持多模态和单模态检测器,适用于室内外3D检测数据集,可与2D检测无缝集成。该框架提供300多种预训练模型、40多种算法实现,以及MMDetection全部功能模块。MMDetection3D不仅可用于研究,还可作为库支持各类3D检测应用开发。
torchlm - 面向人脸关键点检测的开源工具包
Githubtorchlm人脸关键点检测开源项目数据增强模型训练深度学习
torchlm是一个开源的人脸关键点检测工具包,提供训练、评估、导出和推理功能。它包含100多种数据增强方法,支持30多种原生关键点增强,可与torchvision和albumentations集成。torchlm实现了PIPNet等先进模型,在多个基准数据集上性能出色。该项目简化了人脸关键点检测的开发流程,适用于研究和实际应用。
pytorch-widedeep - 基于PyTorch的多模式深度学习工具包,结合表格、文本和图像数据
Githubpytorch-widedeep多模态深度学习宽和深模型开源项目机器学习表格数据
pytorch-widedeep是一个基于Google的Wide and Deep算法的开源项目,专为多模式数据集设计,支持结合表格、文本和图像数据。该工具包提供多种架构和自定义模型支持,如TabMlp、BasicRNN、TabTransformer等。详细的安装、快速入门和使用扩展步骤可在官方文档中找到。pytorch-widedeep适合多模式数据的深度学习研究和应用。
mmpretrain - 支持多种模型与大规模训练配置的PyTorch开源预训练工具箱
GithubMMPreTrainOpenMMLabPyTorch多模态学习开源项目预训练工具箱
MMPreTrain是基于PyTorch的开源预训练工具箱,提供丰富的训练策略和高效的模型分析工具。支持多种主干网络和预训练模型,如VGG、ResNet、Vision-Transformer等。具备强大的扩展性和高效性,适用于图像分类、图像描述、视觉问答等多种推理任务。最新版本v1.2.0增加了对LLaVA 1.5和RAM的支持,并提供Gradio界面。适用于多模态学习和自监督学习,支持大规模训练配置。提供详细的安装和教程文档,帮助用户快速入门。
opensphere - 统一的高维球面人脸识别训练评估框架
GithubOpenSpherePyTorch人脸识别开源项目深度学习超球面
OpenSphere是基于PyTorch的高维球面人脸识别库,提供统一的训练和评估框架。该项目将损失函数与其他组件解耦,支持公平比较不同损失函数。OpenSphere实现了多种先进的损失函数和网络架构,包括SphereFace系列,并集成了丰富的数据集。这一开源平台旨在为相关研究提供可复现的基准环境。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号