Project Icon

Multi-Modality-Arena

完善的多模态模型评估工具,让视觉问答更精准

Multi-Modality Arena 是一个专注于评估多模态模型的开放平台,支持视觉问答任务的对比测试。平台发布了OmniMedVQA和Tiny LVLM-eHub等评估基准,涵盖广泛的视觉和语言领域。用户可以访问在线演示,参与评估项目,并利用丰富的模型和数据集资源进行性能优化。

visualwebarena - 真实视觉网络任务评估多模态智能体表现的基准平台
AI评估GPT-4VGithubVisualWebArena多模态代理开源项目视觉网页任务
VisualWebArena是一个评估多模态自主语言智能体的真实基准平台。它包含多种基于网络的复杂视觉任务,全面评估智能体的各项能力。该项目基于WebArena的可复现评估方法,提供端到端训练和环境重置功能,支持在任意网页上测试多模态智能体。项目还公开了GPT-4V + SoM智能体在910个任务中的表现数据,方便研究人员进行分析和评估。
llava-onevision-qwen2-72b-si - 多模态模型提高视觉数据交互准确率
GithubHuggingfaceLLaVA-OneVision准确率图像交互多模态开源项目模型预训练模型
此开源项目使用多模态模型,准确率介于85.1%至93.7%之间,在AI2D、DocVQA、Science-QA等数据集表现优异。基于Qwen2语言模型,LLaVA-OneVision能在多语言环境中与视觉数据进行交互,经过大型图像及视频数据集训练,使用bfloat16精度。
MMVP - 探索多模态大语言模型的视觉局限
GithubInterleaved-MoFMMVP基准测试多模态LLM开源项目视觉模式视觉能力
MMVP基准测试揭示了多模态大语言模型在视觉理解方面的局限。即使是顶尖模型也难以准确完成基本视觉定位任务。项目开发的Interleaved-MoF模型旨在改善这些问题。MMVP还提供了开放的评估工具和数据集,为多模态AI技术的发展做出了贡献。
LLaVA-Med - 生物医学视觉语言模型助力图像分析与智能问答
GithubLLaVA-Med多模态大语言模型开源项目生物医学视觉问答
LLaVA-Med是一个针对生物医学领域的大规模语言和视觉模型。该模型通过课程学习方法对LLaVA进行了生物医学领域适应,在PathVQA和VQA-RAD等开放式生物医学问答任务中表现优异。LLaVA-Med支持多模态对话和视觉问答,为生物医学视觉语言处理研究提供了有力工具。需要注意的是,此模型仅供研究使用,不适用于临床决策。
Q-Bench - 评测多模态大语言模型的低层视觉能力
GithubICLR2024Q-Bench低层视觉基准测试多模态大语言模型开源项目
Q-Bench是一个评估多模态大语言模型低层视觉能力的基准测试。它通过感知、描述和评估三个领域,使用LLVisionQA和LLDescribe数据集测试模型性能。该项目采用开放式评估框架,支持研究者提交结果或模型。Q-Bench对比了开源和闭源模型的表现,并与人类专家水平进行对照,为深入理解和提升多模态AI的基础视觉处理能力提供了关键洞察。
awesome-multimodal-in-medical-imaging - 医学影像多模态学习应用资源集锦
Github医学影像多模态学习开源项目报告生成视觉语言模型视觉问答
该项目汇集医学影像多模态学习应用资源,涵盖数据集、综述、报告生成、视觉问答和视觉语言模型等。内容包括大语言模型相关论文,并提供最新论文和代码链接。资源库定期更新,收录超过100篇高质量论文,为医学影像多模态研究提供重要参考。
MMBench - 全面评估多模态大模型能力的基准测试
GithubMMBench多模态模型开源项目循环评估视觉语言模型评估基准
MMBench是评估视觉语言模型多模态理解能力的基准测试集。它包含近3000道多项选择题,涵盖20个能力维度,采用循环评估和LLM选项提取等创新方法,提供可靠客观的评估。通过细粒度的能力测试和可重复的评价标准,MMBench为多模态模型开发提供了有价值的反馈。
VLMEvalKit - 开源的大型视觉语言模型评估工具包
GithubVLMEvalKit多模态数据集大型视觉语言模型开源开源项目评估工具包
VLMEvalKit是一款开源的大型视觉语言模型评估工具包,支持即插即用的评估操作,无需繁重的数据准备。该工具包支持多种顶级数据库和最新模型测试,并为用户提供精确匹配和基于LLM的答案提取两种评估结果。有效工具,帮助专业人员和研究者评估模型性能。
MMMU - 多学科多模态理解与推理基准评估专家级AGI
GPT-4V(ision)GithubMMMU专家AGI基准测试多模态理解开源项目
MMMU是一个新型基准测试,设计用于评估多模态模型在多学科任务中的表现,特别是需要大学水平的学科知识和深思熟虑的推理能力。该基准包含11.5K道来自大学考试、测验和教材的多模态题目,覆盖艺术设计、商业、科学、健康医学、人文社会科学及技术工程六大领域。不同于现有基准,MMMU专注于高级感知和领域特定知识的推理,挑战模型执行专家级任务。评估14个开源LMM和GPT-4V(ision)显示,即使是最先进的模型其准确率仅为56%,表明有巨大改进空间。
Awesome-Multimodal-Large-Language-Models - 多模态大语言模型研究资源与最新进展汇总
Github多模态大语言模型开源项目指令微调模型评估视觉语言模型视频理解
该项目汇总了多模态大语言模型(MLLMs)领域的最新研究成果,包括论文、数据集和评估基准。涵盖多模态指令微调、幻觉、上下文学习等方向,提供相关代码和演示。项目还包含MLLM调查报告及MME、Video-MME等评估基准,为研究人员提供全面参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号