Project Icon

visualwebarena

真实视觉网络任务评估多模态智能体表现的基准平台

VisualWebArena是一个评估多模态自主语言智能体的真实基准平台。它包含多种基于网络的复杂视觉任务,全面评估智能体的各项能力。该项目基于WebArena的可复现评估方法,提供端到端训练和环境重置功能,支持在任意网页上测试多模态智能体。项目还公开了GPT-4V + SoM智能体在910个任务中的表现数据,方便研究人员进行分析和评估。

VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks

[Website] [Paper]

VisualWebArena is a realistic and diverse benchmark for evaluating multimodal autonomous language agents. It comprises of a set of diverse and complex web-based visual tasks that evaluate various capabilities of autonomous multimodal agents. It builds off the reproducible, execution based evaluation introduced in WebArena.

Overview

TODOs

  • Add human trajectories.
  • Add GPT-4V + SoM trajectories from our paper.
  • Add scripts for end-to-end training and reset of environments.
  • Add demo to run multimodal agents on any arbitrary webpage.

News

  • [08/05/2024]: Added an Amazon Machine Image that pre-installed all VWA (and WA) websites so that you don't have to!
  • [03/08/2024]: Added the agent trajectories of our GPT-4V + SoM agent on the full set of 910 VWA tasks.
  • [02/14/2024]: Added a demo script for running the GPT-4V + SoM agent on any task on an arbitrary website.
  • [01/25/2024]: GitHub repo released with tasks and scripts for setting up the VWA environments.

Install

# Python 3.10 (or 3.11, but not 3.12 cause 3.12 deprecated distutils needed here)
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
playwright install
pip install -e .

You can also run the unit tests to ensure that VisualWebArena is installed correctly:

pytest -x

End-to-end Evaluation

  1. Setup the standalone environments. Please check out this page for details.

  2. Configurate the urls for each website. First, export the DATASET to be visualwebarena:

export DATASET=visualwebarena

Then, set the URL for the websites

export CLASSIFIEDS="<your_classifieds_domain>:9980"
export CLASSIFIEDS_RESET_TOKEN="4b61655535e7ed388f0d40a93600254c"  # Default reset token for classifieds site, change if you edited its docker-compose.yml
export SHOPPING="<your_shopping_site_domain>:7770"
export REDDIT="<your_reddit_domain>:9999"
export WIKIPEDIA="<your_wikipedia_domain>:8888"
export HOMEPAGE="<your_homepage_domain>:4399"

In addition, if you want to run on the original WebArena tasks, make sure to also set up the CMS, GitLab, and map environments, and then set their respective environment variables:

export SHOPPING_ADMIN="<your_e_commerce_cms_domain>:7780/admin"
export GITLAB="<your_gitlab_domain>:8023"
export MAP="<your_map_domain>:3000"
  1. Generate config files for each test example:
python scripts/generate_test_data.py

You will see *.json files generated in the config_files folder. Each file contains the configuration for one test example.

  1. Obtain and save the auto-login cookies for all websites:
bash prepare.sh
  1. Set up API keys.

If using OpenAI models, set a valid OpenAI API key (starting with sk-) as the environment variable:

export OPENAI_API_KEY=your_key

If using Gemini, first install the gcloud CLI. Configure the API key by authenticating with Google Cloud:

gcloud auth login
gcloud config set project <your_project_name>
  1. Launch the evaluation. For example, to reproduce our GPT-3.5 captioning baseline:
python run.py \
  --instruction_path agent/prompts/jsons/p_cot_id_actree_3s.json \
  --test_start_idx 0 \
  --test_end_idx 1 \
  --result_dir <your_result_dir> \
  --test_config_base_dir=config_files/vwa/test_classifieds \
  --model gpt-3.5-turbo-1106 \
  --observation_type accessibility_tree_with_captioner

This script will run the first Classifieds example with the GPT-3.5 caption-augmented agent. The trajectory will be saved in <your_result_dir>/0.html. Note that the baselines that include a captioning model run on GPU by default (e.g., BLIP-2-T5XL as the captioning model will take up approximately 12GB of GPU VRAM).

GPT-4V + SoM Agent

SoM

To run the GPT-4V + SoM agent we proposed in our paper, you can run evaluation with the following flags:

python run.py \
  --instruction_path agent/prompts/jsons/p_som_cot_id_actree_3s.json \
  --test_start_idx 0 \
  --test_end_idx 1 \
  --result_dir <your_result_dir> \
  --test_config_base_dir=config_files/vwa/test_classifieds \
  --model gpt-4-vision-preview \
  --action_set_tag som  --observation_type image_som

To run Gemini models, you can change the provider, model, and the max_obs_length (as Gemini uses characters instead of tokens for inputs):

python run.py \
  --instruction_path agent/prompts/jsons/p_som_cot_id_actree_3s.json \
  --test_start_idx 0 \
  --test_end_idx 1 \
  --max_steps 1 \
  --result_dir <your_result_dir> \
  --test_config_base_dir=config_files/vwa/test_classifieds \
  --provider google  --model gemini --mode completion  --max_obs_length 15360 \
  --action_set_tag som  --observation_type image_som

If you'd like to reproduce the results from our paper, we have also provided scripts in scripts/ to run the full evaluation pipeline on each of the VWA environments. For example, to reproduce the results from the Classifieds environment, you can run:

bash scripts/run_classifieds_som.sh

Agent Trajectories

To facilitate analysis and evals, we have also released the trajectories of the GPT-4V + SoM agent on the full set of 910 VWA tasks here. It consists of .html files that record the agent's observations and output at each step of the trajectory.

Demo

Demo

We have also prepared a demo for you to run the agents on your own task on an arbitrary webpage. An example is shown above where the agent is tasked to find the best Thai restaurant in Pittsburgh.

After following the setup instructions above and setting the OpenAI API key (the other environment variables for website URLs aren't really used, so you should be able to set them to some dummy variable), you can run the GPT-4V + SoM agent with the following command:

python run_demo.py \
  --instruction_path agent/prompts/jsons/p_som_cot_id_actree_3s.json \
  --start_url "https://www.amazon.com" \
  --image "https://media.npr.org/assets/img/2023/01/14/this-is-fine_wide-0077dc0607062e15b476fb7f3bd99c5f340af356-s1400-c100.jpg" \
  --intent "Help me navigate to a shirt that has this on it." \
  --result_dir demo_test_amazon \
  --model gpt-4-vision-preview \
  --action_set_tag som  --observation_type image_som \
  --render

This tasks the agent to find a shirt that looks like the provided image (the "This is fine" dog) from Amazon. Have fun!

Human Evaluations

We collected human trajectories on 233 tasks (one from each template type) and the Playwright recording files are provided here. These are the same tasks reported in our paper (with a human success rate of ~89%). You can view the HTML pages, actions, etc., by running playwright show-trace <example_id>.zip. The example_id follows the same structure as the examples from the corresponding site in config_files/.

Citation

If you find our environment or our models useful, please consider citing VisualWebArena as well as WebArena:

@article{koh2024visualwebarena,
  title={VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks},
  author={Koh, Jing Yu and Lo, Robert and Jang, Lawrence and Duvvur, Vikram and Lim, Ming Chong and Huang, Po-Yu and Neubig, Graham and Zhou, Shuyan and Salakhutdinov, Ruslan and Fried, Daniel},
  journal={arXiv preprint arXiv:2401.13649},
  year={2024}
}

@article{zhou2024webarena,
  title={WebArena: A Realistic Web Environment for Building Autonomous Agents},
  author={Zhou, Shuyan and Xu, Frank F and Zhu, Hao and Zhou, Xuhui and Lo, Robert and Sridhar, Abishek and Cheng, Xianyi and Bisk, Yonatan and Fried, Daniel and Alon, Uri and others},
  journal={ICLR},
  year={2024}
}

Acknowledgements

Our code is heavily based off the WebArena codebase.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号