Project Icon

ppq

多功能的神经网络量化工具

PPQ 是一个适用于工业应用的神经网络量化工具。通过将浮点运算转换为定点运算,它显著提升系统功耗效率和执行速度。具备高度扩展性,用户可自定义量化过程,并结合多种硬件和推理库使用。版本 0.6.6 更新了图模式匹配、图融合功能,并新增 FP8 量化规范和 PFL 基础类库。支持 TensorRT, Openvino, Onnxruntime 等推理框架,实现高效的神经网络量化部署。

EVA-Qwen2.5-14B-v0.1-GGUF - 多格式量化模型文件下载,便捷获取高性能AI模型
EVA-Qwen2.5-14B-v0.1GithubHugging FaceHuggingface开源项目权重矩阵模型语料库量化方法
EVA-Qwen2.5-14B-v0.1-GGUF提供多种量化模型文件支持AI模型部署,涵盖Q2_K至Q8_0格式。通过Hugging Face和nethype GmbH的资源,项目提供了性能优异的模型文件。详细使用方法请参考项目链接中的文档,FAQ部分提供了常见问题的解答。
Qwen2.5-7B-Instruct-Uncensored-GGUF - 中英文无删减指令模型的最新静态量化版本,适合多语言支持
GithubHugging FaceHuggingfaceQwen2.5-7B-Instruct-Uncensored开源项目数据集模型量化
该项目为Qwen2.5-7B-Instruct-Uncensored模型提供多种质量和大小的静态量化文件,支持中英文双语功能。用户可选择合适的量化类型,包括快速的Q4_K_S与Q4_K_M以及高质量的Q8_0和Q6_K。这些文件可提升模型性能,尤其在敏感内容处理及多语言支持方面。使用说明可参考TheBloke的文档。项目得益于nethype公司的资源支持。
Meta-Llama-3.1-8B-Instruct-AWQ-INT4 - 高性能4比特量化优化版本
AutoAWQGithubHuggingfaceMeta-Llama-3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的社区驱动4比特量化版本,采用AutoAWQ技术从FP16量化到INT4。该版本仅需4GB显存即可加载,大幅降低内存占用。支持Transformers、AutoAWQ、TGI和vLLM等多种推理方式,适用于不同部署场景。量化模型在保持原始性能的同时,为资源受限环境提供了高效的大语言模型方案。
Phi-3.5-mini-instruct_Uncensored-GGUF - 优化的量化模型提供多种压缩方案支持不同运行环境
GGUFGithubHuggingfaceLLMPhi-3.5llama.cpp开源项目模型量化
该项目基于llama.cpp框架,将Phi-3.5-mini-instruct模型转换为GGUF格式,提供从F16到IQ2_M共19种量化版本。模型文件大小范围在1.32GB至7.64GB之间,适配CPU和GPU环境。Q6_K、Q5_K系列及IQ4_XS等版本在性能与体积上表现均衡,可根据硬件配置选择适合的版本使用。
MiniCPM-V-2_6-gguf - 高性能GGUF格式多模态模型转换与部署指南
GithubHuggingfaceMiniCPM-V多模态开源项目推理模型模型转换量化
MiniCPM-V-2.6是一个支持GGUF格式转换的多模态模型项目。项目展示了PyTorch模型到GGUF格式的转换流程,实现F16和INT4量化,并在Linux及Mac平台实现本地部署。项目提供完整的模型转换、构建和推理步骤,方便开发者进行多模态模型的本地化部署。
buddhi-128k-chat-7b-GGUF - 高效的文本生成模型量化方式,保障性能与质量
GithubHuggingfacellama.cpp开源项目模型质量量化高精度
本项目通过llama.cpp的量化处理,满足多样硬件需求,提供不同文件格式。i-matrix选项的应用和各类量化方式的整合,提升了模型精度与效率。根据RAM和VRAM情况,用户可以选择合适的量化版本。通过特性图表选择K-quants或I-quants,尤其是I-quants在性能和体积方面更具优势。下载指引详细,便于用户节省存储空间并优化性能,支持多种GPU平台,适合专业用户高效部署。
DeepSeek-Coder-V2-Lite-Base-GGUF - 文本生成量化模型的高效选择方案
DeepSeek-Coder-V2-Lite-BaseGithubHuggingfacegguf格式开源项目文件下载模型量化高质量模型
该项目通过llama.cpp和imatrix技术对文本生成模型进行量化处理,为不同硬件配置提供优化选择。模型文件允许根据RAM和VRAM大小选择最佳方案,从而提升运行效率。K-quants在多数应用中表现理想,而I-quants提供更优性能但在硬件兼容性上有特定要求。项目提供的工具和文档为用户在进行文本生成任务的过程中提供指导,帮助选择兼顾速度与质量的量化模型。
quantized-models - 提供多源量化模型以提升大语言模型推理效率
GithubHuggingfacequantized-modelstransformers大型语言模型开源项目文本生成推理模型量化模型
quantized-models项目整合了多种来源的量化模型,旨在提高大语言模型的推理效率。模型支持者包括TheBloke、LoneStriker、Meta Llama等,提供gguf、exl2格式的支持。用户可通过transformers库便捷地进行文本生成,这些模型按现状发布,需遵循其各自的许可协议。
XNNPACK - 多平台优化的神经网络推理引擎 支持移动和嵌入式系统
GithubXNNPACK开源项目深度学习框架神经网络推理移动平台优化算子支持
XNNPACK是一个用于加速高级机器学习框架的神经网络推理引擎。它支持ARM、x86、WebAssembly和RISC-V等多种平台,提供低级性能原语,优化TensorFlow Lite、PyTorch等框架的运行效率。XNNPACK实现了丰富的神经网络操作符,在移动设备和嵌入式系统上表现出色,能高效运行各代MobileNet模型。在Pixel 3a上,XNNPACK能在44毫秒内完成FP32 MobileNet v3 Large的单线程推理,展现了其卓越的性能。
pennylane - 跨平台量子计算与机器学习Python库
GithubPennyLane开源项目自动微分量子化学量子机器学习量子计算
PennyLane是一个跨平台的Python库,专注于量子计算、量子机器学习和量子化学。集成了PyTorch、TensorFlow、JAX和NumPy等流行框架,支持量子硬件上的机器学习。支持即时代码编译和多种量子后端,提供自动微分功能,并包括量子模拟器和优化工具,便于快速原型设计。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号