Project Icon

openrl

综合性强化学习平台,支持多任务训练

OpenRL 是一款基于 PyTorch 的开源强化学习研究框架,支持单代理、多代理、离线强化学习、自我对弈及自然语言处理任务。框架提供统一接口、训练加速方法和多种深度学习模型支持,兼容 Gymnasium、MuJoCo、StarCraft II 等多种环境。同时,OpenRL 还支持用户自定义训练模型、奖励模型和环境配置,并提供中英文文档。

OfflineRL-Kit - 高效易用的PyTorch离线强化学习库
GithubPyTorch实验管理开源项目模型训练离线强化学习算法库
OfflineRL-Kit是基于PyTorch的离线强化学习库,提供清晰的代码结构和最新算法实现。支持CQL、TD3+BC等多种算法,具备高扩展性和强大的日志系统。该库还支持并行调优,便于研究人员进行实验。相比其他离线强化学习库,OfflineRL-Kit在性能和易用性方面都有显著优势,是离线强化学习研究的有力工具。
Practical_RL - 强化学习开源课程:实用技巧与实践
GithubGoogle ColabHSEPractical_RLYSDA开源项目强化学习
Practical_RL是一个专注于强化学习实用性的开源课程,提供HSE和YSDA的课堂教学及线上学习支持,涵盖英语和俄语材料。课程从基础理论到实践应用,包括价值迭代、Q学习、深度学习、探索策略、策略梯度方法、序列模型及部分观察MDP等内容。学生可以通过GitHub改进课程,使用Google Colab或本地环境进行实践。适合希望在实际问题中应用强化学习的学生和研究者。
tmrl - 实时机器人控制与自动驾驶AI的分布式强化学习框架
GithubGymnasium环境TMRLTrackMania 2020开源项目强化学习自动驾驶
TMRL是一个面向机器人学习的分布式强化学习框架,专注于实时应用中的深度强化学习AI训练。该框架以TrackMania 2020游戏为例,展示了基于原始截图的自动驾驶控制。TMRL具备安全远程训练、灵活定制和实时环境兼容性等特点,采用单服务器多客户端架构,可在多个节点收集样本并在高性能集群上进行训练。
awesome-deep-rl - 全面的深度强化学习资源库
Github基准测试开源库开源项目深度强化学习环境模拟竞赛
该项目汇集了深度强化学习领域的各类资源,包括主流库、基准测试结果、训练环境、竞赛信息和发展时间线。研究人员和开发者可以在此快速了解该领域的全貌,获取有价值的工具和信息。作为一个综合性资源库,它为深度强化学习的学习和研究提供了便利。
simple_rl - 轻量级Python强化学习实验框架
GithubPython复现结果实验开源项目强化学习简单框架
simple_rl框架专注于简化强化学习实验流程和提高结果可复现性。它内置了网格世界、OpenAI Gym等MDP环境,实现了Q-learning和R-Max等经典算法。新增的实验复现功能方便研究者重现成果。该框架支持Python 2和3,为强化学习研究和教学提供了实用工具。
skrl - 开源模块化强化学习库
GithubJAXPyTorchSKRL开源项目强化学习环境接口
skrl是基于PyTorch和JAX的开源模块化强化学习库。支持OpenAI Gym、Farama Gymnasium等多种环境接口,并兼容NVIDIA Isaac系列环境。该库注重模块化设计、代码可读性和实现透明度,允许同时训练多个智能体,可在单次运行中共享或独立资源。skrl为强化学习研究和开发提供了灵活高效的工具。
mushroom-rl - 模块化强化学习Python库MushroomRL
GithubMushroomRLPython库开源项目强化学习机器学习深度学习
MushroomRL是一个模块化的Python强化学习库,集成主流张量计算库和RL基准测试环境。它实现了经典和深度强化学习算法,便于进行RL实验。该库兼容OpenAI Gym、PyBullet等环境,涵盖Q-Learning、DQN、DDPG等算法。MushroomRL还支持Habitat和iGibson等高真实度模拟环境,为研究提供多样化选择。
rl-book - 强化学习理论及Python实现的教程和代码
GithubPyTorchReinforcement LearningTensorFlow开源项目理论算法
本书系统介绍强化学习,从基础理论到具体算法实现,包含基于TensorFlow和PyTorch的代码对照,实现经典和现代深度强化学习算法。提供完整数学推导和高质量代码,适合希望深入理解和应用强化学习的读者。
PantheonRL - 多智能体强化学习训练和测试的模块化框架
GithubPantheonRLStableBaselines3多智能体强化学习开源项目自适应训练训练框架
PantheonRL是一个用于多智能体强化学习环境训练和测试的开源框架。它提供模块化和可扩展的功能,支持智能体策略训练、微调、动态配对等。基于StableBaselines3构建,PantheonRL采用去中心化训练方法,为每个智能体配备独立的重放缓冲区和更新算法。此外,它还提供Web用户界面,便于进行轻量级实验和原型设计,支持自我对弈、交叉对弈、循环训练和微调等多种训练模式。
awesome-deep-rl - 深度强化学习领域的最新研究综述与应用案例
Deep Reinforcement LearningGithubModel-basedPolicy GradientReinforcement LearningUnsupervised RL开源项目
该项目收录了深度强化学习领域的重要研究成果和应用示例,包括最新的学术论文、框架、算法和应用案例,覆盖无监督、离线、价值基础和策略梯度等多种方法。项目内容经常更新,提供最新的研究动态和工具,如2024年的HILP与2022年的EDDICT。适合从事人工智能、机器学习和强化学习的专业人员与爱好者了解该领域的最新进展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号