Project Icon

openrl

综合性强化学习平台,支持多任务训练

OpenRL 是一款基于 PyTorch 的开源强化学习研究框架,支持单代理、多代理、离线强化学习、自我对弈及自然语言处理任务。框架提供统一接口、训练加速方法和多种深度学习模型支持,兼容 Gymnasium、MuJoCo、StarCraft II 等多种环境。同时,OpenRL 还支持用户自定义训练模型、奖励模型和环境配置,并提供中英文文档。

rl_games - 强化学习框架支持多环境及算法的高性能实现
GPU加速GithubRL Games多智能体训练开源项目强化学习机器人学习
rl_games是一个高性能强化学习库,实现了PPO、A2C等算法,支持NVIDIA Isaac Gym、Brax等环境的GPU加速训练。该库具备异步actor-critic、多智能体训练、自对弈等功能,可在多GPU上并行。rl_games提供Colab notebook示例便于快速上手,在多个基准测试中表现出色。作为一个功能丰富的强化学习工具,rl_games兼具高性能和易用性。
sheeprl - 基于PyTorch的强化学习框架支持多种算法和环境
GithubLightning FabricPyTorchSheepRL开源项目强化学习算法实现
SheepRL是一个基于PyTorch和Lightning Fabric的强化学习框架。它支持PPO、SAC、Dreamer等多种算法,以及Atari、MuJoCo、Minecraft等多种环境。该框架易用可扩展,实现了算法与环境的解耦,适用于广泛的强化学习任务。在部分基准测试中,SheepRL展现出与其他框架相当甚至更优的性能,为强化学习研究和开发提供了高效工具。
AI-Optimizer - 涵盖从无模型到基于模型,从单智能体到多智能体的多种算法的多功能深度强化学习平台
AI-OptimizerGithub多智能体强化学习开源项目深度强化学习离线强化学习自监督学习
AI-Optimizer是一款多功能深度强化学习平台,涵盖从无模型到基于模型,从单智能体到多智能体的多种算法。其分布式训练框架高效便捷,支持多智能体强化学习、离线强化学习、迁移和多任务强化学习、自监督表示学习等,解决维度诅咒、非平稳性和探索-利用平衡等难题,广泛应用于无人机、围棋、扑克、机器人控制和自动驾驶等领域。
RLcycle - 开源强化学习框架 提供多种算法实现
GithubHydraPyTorchRayWandB开源项目强化学习
RLcycle是一个开源的强化学习框架,实现了多种经典算法如DQN、A2C/A3C、DDPG和SAC。框架基于PyTorch构建,集成了Hydra配置管理、Ray并行计算和WandB日志记录功能。RLcycle提供可重用组件便于快速开发,支持Atari和PyBullet等环境,并附有使用指南和性能基准。该项目适合研究人员和开发者学习和实践各类强化学习算法。
rsl_rl - 面向GPU的高效强化学习框架
GPU运行GithubPPO算法RSL RL开源项目强化学习
rsl_rl是一个专为GPU运行优化的强化学习框架,目前实现了PPO算法,未来将支持更多算法。框架提供详细的安装指南,集成多种日志工具,并采用严格的代码质量管理。它在Legged-Gym和Orbit等机器人仿真环境中得到应用,为强化学习研究和开发提供了高效工具。
rl4co - 统一框架助力组合优化问题的强化学习解决方案
GithubPyTorchRL4CO开源框架开源项目强化学习组合优化
RL4CO是一个专注于组合优化问题的开源强化学习框架。基于PyTorch构建,它整合了TorchRL和TensorDict等技术,提供统一接口和灵活实现。框架支持构造型和改进型策略,适配多种环境和模型。其模块化设计和丰富工具集有助于研究人员高效开发和评估新算法,为组合优化研究提供了全面的实验平台。
genrl - 强化学习算法库,提供快速基准测试和示例教程
GenRLGithubPyTorch基准测试开源项目强化学习算法实现
GenRL是一个基于PyTorch的强化学习库,提供可重现的算法实现和通用接口。它包含20多个从基础到高级的强化学习教程,并支持模块化和可扩展的Python编程。统一的训练和日志记录功能提高了代码复用性,同时自动超参数调整功能加速了基准测试。GenRL旨在支持新算法的实现,代码少于100行。适用于Python 3.6及以上版本,依赖于PyTorch和OpenAI Gym。
nnabla-rl - 深度强化学习库,基于Neural Network Libraries构建
GPU加速GithubPythonnnablaRL开源项目深度强化学习神经网络库
nnabla-rl是基于Neural Network Libraries构建的深度强化学习库,适用于研究、开发和生产环境。该库提供简洁的Python API,集成多种经典和前沿强化学习算法,实现在线与离线训练的灵活切换。nnabla-rl支持通过nnabla-browser可视化训练过程,安装便捷,兼容GPU加速,并提供交互式示例便于快速上手。
scope-rl - 离线强化学习与策略评估的开源Python库
GithubPython库SCOPE-RL开源项目离线强化学习离线策略评估策略选择
SCOPE-RL是一个用于离线强化学习的开源Python库。它实现了从数据生成到策略学习、评估和选择的完整流程。该库提供了多种离线策略评估(OPE)估计器和策略选择(OPS)方法,兼容OpenAI Gym和Gymnasium接口。SCOPE-RL还包含RTBGym和RecGym环境,用于模拟实际应用场景。它简化了离线强化学习的研究和实践过程,提高了实验的透明度和可靠性。
open_spiel - 综合游戏AI研究框架支持多类型博弈
GithubOpenSpiel多智能体开源项目强化学习游戏框架算法研究
OpenSpiel是一个专注于游戏中强化学习和搜索规划研究的开源框架。它支持多种类型的游戏环境,包括多人、零和、合作、序列、同时行动以及完美/不完美信息等。该框架提供了分析工具和评估指标,核心API使用C++实现并提供Python接口。OpenSpiel为游戏AI算法的研究和开发提供了全面的实验平台。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号