Project Icon

PINTO_model_zoo

提供多框架神经网络模型转换与量化的开源工具

PINTO_model_zoo 是一个开源工具库,支持 TensorFlow、PyTorch、ONNX、OpenVINO 等多个框架的模型转换和量化。项目提供多种量化方法,包括权重量化、整数量化和浮点数量化,旨在优化模型性能以适应不同平台,如 RaspberryPi 和 EdgeTPU。它还提供大量预量化模型和详细转换指南,帮助开发者在各种设备上高效部署深度学习模型。

CNTK - 深度学习工具包,支持多种模型,包括DNN、CNN和RNN
CNTKGithubONNX开源开源项目深度学习神经网络
CNTK,微软的开源深度学习工具包,支持多种模型,包括DNN、CNN和RNN。具备自动微分和GPU并行化等高级功能,简化开发和训练流程,并完美支持ONNX,兼容多种AI框架。
TencentPretrain - 多模态预训练和微调框架,支持文本、视觉与音频数据
GithubTencentPretrain下游任务多模态开源项目模型库预训练
腾讯开发的多模态预训练框架TencentPretrain,专为文本、视觉和音频数据设计,具有高效的模块化设计,便于使用现有预训练模型并提供扩展接口。支持CPU、单GPU及分布式训练模式,拥有丰富的预训练模型,适用于如分类、机器阅读理解等多种下游任务,在多个竞赛中表现优异。详见完整文档及快速入门指南。
Phi-3.1-mini-128k-instruct-GGUF - 量化指导优化内存资源使用
GithubHuggingfacePhi-3-mini-128k-instruct下载文件开源项目模型模型选择量化高质量
项目利用llama.cpp和imatrix技术对模型进行量化,提供适合不同内存需求的文件。用户可通过huggingface-cli根据硬件选择量化格式,实现速度与质量平衡。同时,项目提供特性图表以指引用户选择‘I-quant’或‘K-quant’方法,满足不同硬件环境性能要求。
AutoGPTQ - 基于GPTQ算法的LLM量化与推理优化工具包
AutoGPTQGPTQ算法Github安装指南开源项目推理速度量化模型
AutoGPTQ是基于GPTQ算法的LLM量化工具包,支持多种模型类型和硬件平台的推理优化,整合Marlin与Exllama内核,提升推理速度与性能,适合在资源受限环境中部署高效的语言模型。
Meta-Llama-3.1-8B-Instruct-GPTQ-INT4 - Meta-Llama-3.1-8B-Instruct模型的INT4量化版本
GPTQGithubHuggingfaceMeta Llama 3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的INT4量化版本,由社区开发。该版本将原FP16模型量化为INT4,支持多语言对话,在行业基准测试中表现优异。模型仅需约4GB显存即可加载,兼容多种推理框架。项目提供详细使用指南和量化复现方法,适用于资源受限环境下的高效部署。
AutoAWQ - 面向大型语言模型的高效4位量化框架
AutoAWQGPU加速Github大语言模型开源项目推理量化
AutoAWQ是一个专门针对大型语言模型的4位量化框架,通过实现激活感知权重量化算法,可将模型速度提升3倍,同时减少3倍内存需求。该框架支持Mistral、LLaVa、Mixtral等多种模型,具备多GPU支持、CUDA和ROCm兼容性以及PEFT兼容训练等特性。AutoAWQ为提升大型语言模型的推理效率提供了有力工具。
Tensorflow-bin - 适用于RaspberryPi的Tensorflow Lite预构建二进制文件,支持XNNPACK和半精度推理功能
GithubPython APIRaspberryPiTensorflow LiteTensorflow-binXNNPACK开源项目
提供适用于RaspberryPi的Tensorflow Lite预构建二进制文件,支持XNNPACK和半精度推理功能。兼容多个操作系统和Python版本,支持Tensorflow v1到v2的多版本安装。通过简便的安装脚本,用户可以快速部署和运行Tensorflow模型,实现高效的设备端推理。
Meta-Llama-3.1-8B-Instruct-AWQ-INT4 - 高性能4比特量化优化版本
AutoAWQGithubHuggingfaceMeta-Llama-3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的社区驱动4比特量化版本,采用AutoAWQ技术从FP16量化到INT4。该版本仅需4GB显存即可加载,大幅降低内存占用。支持Transformers、AutoAWQ、TGI和vLLM等多种推理方式,适用于不同部署场景。量化模型在保持原始性能的同时,为资源受限环境提供了高效的大语言模型方案。
MiniCPM-V-2_6-GGUF - 使用imatrix量化优化模型性能
GithubHuggingfaceMiniCPM-V-2_6transformers多语言开源项目模型视觉处理量化
项目应用llama.cpp的imatrix量化方法,优化模型的文本性能。提供多种量化文件,适配不同硬件配置,尤其适合低RAM环境。这一技术允许根据系统RAM和GPU VRAM选择合适的模型,实现性能与速度的平衡。支持多模态图像-文本转换和多语言处理,可在LM Studio中运行,为开源社区提供多样化的工具和使用选择。
optimum-intel - Transformers和Diffusers库与Intel提供的不同工具和库之间的接口,用于加速 Intel 架构上的端到端管道
GithubIntel Extension for PyTorchNNCFNeural CompressorOpenVINOOptimum Intel开源项目
Optimum Intel接口将Hugging Face的Transformers和Diffusers库与Intel的工具相结合,优化PyTorch模型性能。支持Intel Neural Compressor的量化和剪枝技术,OpenVINO的高性能推理以及Intel Extension for PyTorch的操作融合和图优化。Optimum Intel提供简单直观的接口和丰富示例,便于在Intel硬件上部署高效模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号