Project Icon

MoE-LLaVA

高效视觉语言模型的新方向

MoE-LLaVA项目采用混合专家技术,实现了高效的大规模视觉语言模型。该模型仅使用3B稀疏激活参数就达到了与7B参数模型相当的性能,在多项视觉理解任务中表现优异。项目提供简单的基线方法,通过稀疏路径学习多模态交互,可在8张A100 GPU上1天内完成训练。MoE-LLaVA为构建高性能、低参数量的视觉语言模型探索了新的方向。

llama3-llava-next-8b-hf - LLaVA-NeXT:Llama 3驱动的多模态AI模型
GithubHuggingfaceLLaVA-NeXT图像处理多模态开源项目模型深度学习自然语言处理
LLaVA-NeXT是一个基于Llama 3的多模态AI模型,整合了预训练语言模型和视觉编码器。通过高质量数据混合和强化语言骨干网络,该模型在图像描述、视觉问答和多模态对话等任务中表现出色。LLaVA-NeXT支持Python接口,并提供4位量化和Flash Attention 2优化,以提升性能和效率。作为开源项目,LLaVA-NeXT为研究人员和开发者提供了探索多模态AI的有力工具。
llava-onevision-qwen2-7b-ov-hf - 支持单图多图和视频理解的多模态语言模型
GithubHuggingfaceLLaVA-Onevision人工智能图像理解多模态开源项目模型视频理解
LLaVA-Onevision-qwen2-7b-ov-hf是一个基于Qwen2微调的开源多模态大语言模型。作为首个能在单图、多图和视频场景中同时提升性能的模型,它展现了卓越的跨模态和跨场景迁移学习能力。该模型特别擅长视频理解和跨场景任务,支持多图像和多提示生成,适用于广泛的视觉理解应用。
LVM - 大规模视觉模型的创新顺序建模方法
GithubLVM大规模视觉模型序列建模开源项目视觉句子视觉预训练模型
LVM是一种创新视觉预训练模型,将多种视觉数据转化为视觉句子,并进行自回归式标记预测。该模型采用顺序建模方法,无需语言数据即可学习大规模视觉模型。通过设计视觉提示,LVM可解决多种视觉任务。兼容GPU和TPU,为大规模视觉模型学习提供新方法。
VILA1.5-13b - 多图像推理与跨设备应用的视觉语言模型
GithubHuggingfaceTransformerVILA多图推理多模态开源项目模型视觉语言模型
此页面介绍VILA模型,一种用于多模态研究的视觉语言模型,通过大规模图文数据预训练,提升多重推理能力。VILA支持多图像推理、情境学习,并提供更丰富的知识表现。通过AWQ 4bit量化,模型适用于Jetson Orin等边缘设备,兼顾性能与兼容性。适合计算机视觉与自然语言处理结合的研究者,支持Linux系统,具备出色的指令跟随和视觉推理能力。
Video-LLaMA - 指令微调的音视频语言模型实现多模态视频理解
AI对话GithubVideo-LLaMA多模态开源项目视频理解语言模型
Video-LLaMA是一个多模态AI项目,为大型语言模型赋予视频和音频理解能力。该项目基于BLIP-2和MiniGPT-4构建,包含视觉-语言和音频-语言两个分支。经过大规模视频和图像数据预训练及指令微调后,Video-LLaMA能够进行视频分析、音频理解和多轮对话。该模型支持英文和中文交互,为视频内容分析提供了新的AI解决方案。
Video-LLaVA - 视频多模态模型,具备像素级定位能力
GithubLMMPG-Video-LLaVA像素级别定锚开源项目视频理解音频上下文
PG-Video-LLaVA通过模块化设计,首次实现视频多模态模型具备像素级定位能力。该框架使用现成的追踪器和创新的定位模块,能够根据用户指令在视频中实现空间定位。引入新的基准测试用于评估基于提示的对象定位性能,并结合音频上下文完善视频内容理解,提高在对话和新闻视频等场景中的适用性。改进的定量基准测试确保更高的透明度和可重复性。
Llama-3.2-90B-Vision-Instruct-FP8-dynamic - 基于Meta-Llama架构的FP8量化多语言视觉对话模型
GithubHuggingfaceLlama-3.2vLLM人工智能开源项目模型模型量化视觉语言模型
这是一个基于Meta-Llama-3.2架构开发的视觉语言模型,包含900亿参数。通过FP8量化技术优化,将模型存储空间和GPU内存需求降低约50%。模型支持图像理解和多语言文本生成,主要应用于智能对话系统。借助vLLM后端可实现高效部署和OpenAI兼容服务。
llama-moe - 专家混合模型,支持持续预训练
GithubLLaMALLaMA-MoEMoESheared LLaMASlimPajama开源项目
LLaMA-MoE是基于LLaMA和SlimPajama的开源专家混合模型。通过将LLaMA的FFN划分为稀疏专家并加入top-K门控,模型在优化的数据采样权重下进行持续预训练。特点包括轻量化、多种专家构建方法、多种门控策略和快速预训练,适合部署和研究。提供详细的安装指南和技术文档,帮助用户快速使用并评估模型性能。
LLaVA-Med - 生物医学视觉语言模型助力图像分析与智能问答
GithubLLaVA-Med多模态大语言模型开源项目生物医学视觉问答
LLaVA-Med是一个针对生物医学领域的大规模语言和视觉模型。该模型通过课程学习方法对LLaVA进行了生物医学领域适应,在PathVQA和VQA-RAD等开放式生物医学问答任务中表现优异。LLaVA-Med支持多模态对话和视觉问答,为生物医学视觉语言处理研究提供了有力工具。需要注意的是,此模型仅供研究使用,不适用于临床决策。
Llama-3.2-90B-Vision - 前沿视觉语言模型助力图像识别和推理
GithubHuggingfaceLlama 3.2Meta多模态大语言模型开源项目模型自然语言处理计算机视觉
Llama-3.2-90B-Vision是Meta开发的多模态大语言模型,支持图像和文本输入并输出文本。该模型在视觉识别、图像推理、描述和问答等任务中表现优异,性能超越多个开源和闭源多模态模型。基于Llama 3.1文本模型,通过视觉适配器实现图像理解,支持128K上下文长度。经指令微调后可用于商业和研究,适用于多种视觉语言任务。使用需遵守Llama 3.2社区许可协议。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号