Project Icon

LibFewShot

优化少样本学习研究的开源项目

LibFewShot是一款面向少样本学习研究的开源项目,支持多种经典和元学习方法。项目提供快速安装指南和详细教程,支持的数据集包括Caltech-UCSD Birds、Stanford Cars等,并提供下载多种预训练模型和配置文件。LibFewShot还鼓励代码贡献,遵循PEP 8编码风格。项目采用MIT许可证,仅限学术研究使用。

FSL-Mate - 少样本学习资源平台,推动FSL研究发展
FSL-MateFewShotPapersGithubPaddleFSLPython库少样本学习开源项目
FSL-Mate提供少样本学习的全面资源,包括FewShotPapers论文列表和PaddlePaddle基础的FSL库PaddleFSL。FSL-Mate项目持续更新,致力于简化少样本学习。最新更新涵盖了ICLR 2024、AAAI 2023、EMNLP 2023,以及ICCV和NeurIPS 2023的相关论文。
setfit - SetFit高效小样本学习框架,支持多语言文本分类
GithubHugging Face HubSetFit多语言支持少量标签数据开源项目无需提示
SetFit是一种高效且无需提示的小样本微调框架,利用Sentence Transformers实现高准确度的小样本学习。不需要手工制作提示或语言模型转换器,直接从文本示例生成丰富嵌入,大大提高训练速度。在仅有少量标记数据的情况下,SetFit的精度可与大型模型相媲美。例如,针对客户评论情感数据集,仅使用每类8个标记样本就能达到RoBERTa Large的全量训练精度。支持多语言文本分类,兼容Hugging Face Hub,训练和推理过程简单直观,是一个高效实用的选择。
zshot - 零样本与少样本命名实体和关系识别的开源框架
GithubZshot关系抽取命名实体识别实体链接开源项目零样本学习
Zshot是一个高度可定制的开源框架,支持零样本和少样本的命名实体识别和关系识别。该框架提供提及抽取、维基化和关系抽取等功能,并利用SpaCy进行可视化。适用于研究和工业应用,支持最新的方法和预训练模型,并提供易于扩展的API接口。
lightly - 简单易用的自监督学习工具,支持自定义骨干模型和分布式训练
GithubLightlyPyTorch多模型支持开源项目自监督学习计算机视觉
这个开源项目提供简单易用的自监督学习工具,支持自定义骨干模型和分布式训练。通过模块化设计,用户可以自由调整损失函数和模型头。项目还提供商业版本,包含用于嵌入、分类、检测和分割任务的预训练模型。此外,平台集成了主动学习和数据策划功能,适用于大规模数据处理和强大算法的应用。
fastai - 一个为从业者提供快速提供在标准深度学习领域中提供最先进的高级组件,并提供可以混合和匹配的低级组件构建新方法的深度学习库
GPU优化GithubPyTorchfastai开源项目深度学习计算机视觉
fastai是一个深度学习库,提供高层组件以快速实现高性能结果,同时为研究人员提供可组合的低层组件。通过分层架构和Python、PyTorch的灵活性,fastai在不牺牲易用性、灵活性和性能的情况下,实现了高效的深度学习。支持多种安装方式,包括Google Colab和conda,适用于Windows和Linux。学习资源丰富,包括书籍、免费课程和详细文档。
SlowFast - 开源视频理解框架 提供多种先进模型架构
GithubPySlowFast开源项目深度学习神经网络模型视频理解计算机视觉
PySlowFast是FAIR开发的开源视频理解代码库,提供高效训练的先进视频分类模型。支持SlowFast、Non-local Neural Networks、X3D和Multiscale Vision Transformers等多种架构。该框架便于快速实现和评估视频研究创新,涵盖分类、检测等任务。PySlowFast兼具高性能和轻量级特点,适用于广泛的视频理解研究。
quickai - 简化复杂机器学习模型的实验过程
GithubPythonQuickAIYOLO卷积神经网络开源项目机器学习
QuickAI 是一个 Python 库,简化了前沿机器学习模型的实验流程。支持 EfficientNet、VGG、ResNet 等图像分类模型和 GPT-NEO、Distill BERT 等自然语言处理模型。只需1-2行代码即可完成模型训练和评估,兼容 TensorFlow 和 PyTorch,并提供 Docker 容器便于环境配置。适用于各水平用户,助力快速推进机器学习项目。
falcon - 轻量级自动机器学习库 支持一行代码训练模型
AutoMLFalconGithubONNXPython库开源项目机器学习
Falcon是一个轻量级Python库,通过单行代码即可训练生产级机器学习模型。该库提供简单易用的接口,支持多种预设配置,并可扩展集成其他框架。Falcon深度支持ONNX,实现复杂pipelines导出为单一ONNX图,便于跨平台部署。目前主要支持表格分类和回归任务,适合快速构建和集成机器学习项目。
fast.ai - 简化深度学习的开源教育平台
AI工具fast.ai人工智能数据科学机器学习深度学习
fast.ai提供免费在线课程和开源软件库,通过代码优先的实践教学,帮助各类人群快速掌握深度学习技术。该平台注重应用,让学习者能快速构建模型,同时致力于提高AI领域的多样性。
open-metric-learning - 开源的PyTorch度量学习框架 支持多模态嵌入训练
GithubPyTorchopen-metric-learning嵌入向量度量学习开源项目检索系统
open-metric-learning是一个基于PyTorch的开源度量学习框架,用于训练和验证高质量嵌入模型。它提供端到端流水线、实用案例和预训练模型库,支持图像和文本等多种模态。该框架具有统一的检索结果处理和评估方法,适用于人脸识别、商品搜索等嵌入学习任务。已被多家知名公司和机构采用,是一个功能丰富、易于上手的度量学习工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号