Project Icon

falcon

轻量级自动机器学习库 支持一行代码训练模型

Falcon是一个轻量级Python库,通过单行代码即可训练生产级机器学习模型。该库提供简单易用的接口,支持多种预设配置,并可扩展集成其他框架。Falcon深度支持ONNX,实现复杂pipelines导出为单一ONNX图,便于跨平台部署。目前主要支持表格分类和回归任务,适合快速构建和集成机器学习项目。

Falcon logo

FALCON: A Lightweight AutoML Library

Falcon is a lightweight python library that allows to train production-ready machine learning models in a single line of code.

Why Falcon ? 🔍

  • Simplicity: With Falcon, training a comprehensive Machine Learning pipeline is as easy as writing a single line of code.
  • Flexibility: Falcon offers a range of pre-set configurations, enabling swift interchangeability of internal components with just a minor parameter change.
  • Extendability: Falcon's modular design, along with its extension registration procedure, allows seamless integration with virtually any framework.
  • Portability: A standout feature of Falcon is its deep native support for ONNX models. This lets you export complex pipelines into a single ONNX graph, irrespective of the underlying frameworks. As a result, your model can be conveniently deployed on any platform or with almost any programming language, all without dependence on the training environment.

Future Developments 🔮

Falcon ML is under active development. We've already implemented a robust and production-ready core functionality, but there's much more to come. We plan to introduce many new features by the end of the year, so stay tuned!

⭐ If you liked the project, please support us with a star!

Quick Start 🚀

You can try falcon out simply by pointing it to the location of your dataset.

from falcon import AutoML

AutoML(task = 'tabular_classification', train_data = '/path/to/titanic.csv')

Alternatively, you can use one of the available demo datasets.

from falcon import AutoML
from falcon.datasets import load_churn_dataset, load_insurance_dataset 
# churn -> classification; insurance -> regression

df = load_churn_dataset()

AutoML(task = 'tabular_classification', train_data = df)

Installation 💾

Stable release from PyPi

pip install falcon-ml

Latest version from GitHub

pip install git+https://github.com/OKUA1/falcon

Installing some of the dependencies on Apple Silicon Macs might not work, the workaround is to create an X86 environment using Conda

conda create -n falcon_env
conda activate falcon_env
conda config --env --set subdir osx-64
conda install python=3.9
pip3 install falcon-ml

Documentation 📚

You can find a more detailed guide as well as an API reference in our official docs.

Authors & Contributors ✨

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号