#AutoML
autokeras - 机器学习自动化工具,简化图像分类任务
AutoKeras机器学习AutoML深度学习PythonGithub开源项目
AutoKeras是由德州农工大学DATA实验室开发的开源项目,旨在简化机器学习流程。通过Keras的AutoML系统,用户能够轻松完成图像分类等任务。支持Python 3.7及以上版本和TensorFlow 2.8.0及以上版本,安装方便,只需使用pip命令。提供详细的官方教程和相关书籍资源,社区鼓励贡献和参与。
TransmogrifAI - 自动化机器学习工作流
TransmogrifAIApache SparkAutoMLScalaSalesforceGithub开源项目
TransmogrifAI是一个基于Apache Spark的自动化机器学习库,使用Scala编写,旨在提高开发效率。它提供类型安全、模块化和可重用的API,使用户能快速构建生产级机器学习应用,无需深厚的机器学习知识。该库显著减少模型调优时间,同时实现高精度。
FLAML - 高效的Python库,用于自动化机器学习和模型调优
FLAMLAutoML机器学习模型优化PythonGithub开源项目
FLAML是一款轻量级且高效的Python库,旨在简化大语言模型和机器学习模型的自动化工作流程。通过多智能体对话框架和经济高效的自动调优功能,它帮助用户找到优质模型并优化GPT-X工作流。FLAML支持代码优先的AutoML和调优,能处理大规模搜索空间和复杂约束,广泛适用于分类、回归等任务。适用于Python 3.8及以上版本,并提供详细文档和多种扩展选项,满足用户的不同需求。
lightwood - 用JSON-AI语法简化DS/ML生命周期的AutoML框架
LightwoodAutoMLJSON-AI机器学习管道数据科学Github开源项目
Lightwood是一个用JSON-AI语法简化DS/ML生命周期的AutoML框架。它支持多种数据类型和时间序列模式,使用户无需重复编写样板代码即可专注于独特的模型部分。用户可以修改默认值或替换步骤自定义管道,同时支持自带模型的自定义架构。
h2o-tutorials - H2O-3教程与培训素材
H2OPythonR教程AutoMLGithub开源项目
提供最新的H2O-3教程和培训资源,涵盖R和Python的多个主题,如深度学习、网格搜索和自动建模等。可在此查找详细的相关指南和示例,获取历年重要培训活动的材料,确保教程兼容H2O最新稳定版本。问题和反馈可通过Stack Overflow或H2O Stream Google Group讨论和提交。
gorse - 开源推荐系统引擎实现多源智能推荐
Gorse推荐系统开源Go语言AutoMLGithub开源项目
Gorse 是一款基于 Go 语言的开源推荐系统引擎,提供多源推荐、自动机器学习、分布式预测和 RESTful API 等功能。该系统能自动训练模型,为用户生成个性化推荐。Gorse 还具备在线评估和可视化仪表盘,便于数据管理、系统监控和集群状态检查。它适合寻求高性能、可扩展推荐解决方案的开发者和企业使用。
awesome-automl-papers - 综合自动化机器学习研究资源库
AutoML机器学习自动化算法优化人工智能Github开源项目
本项目汇集了自动化机器学习(AutoML)领域的关键资源,包括论文、文章、教程和开源项目。内容涵盖自动数据清理、特征工程、超参数优化、元学习和神经架构搜索等核心技术。资源库持续更新,助力研究人员和从业者跟踪领域前沿。此外,项目提供了主流AutoML系统的对比分析,为读者呈现全面的领域概貌。
amc - 自动化模型压缩技术提升移动设备AI性能
模型压缩AutoMLMobileNetImageNet剪枝Github开源项目
AMC (AutoML for Model Compression) 是一种创新的自动化模型压缩方法,专为优化移动设备上的深度学习模型而设计。该方法通过自动搜索剪枝策略、导出压缩权重和微调,成功将MobileNet等模型的计算量减少50%,同时维持或提升准确率。AMC不仅适用于MobileNet-V1和V2,还提供PyTorch和TensorFlow格式的压缩模型,为移动设备上的高效AI应用提供了新的可能性。
mljar-supervised - 开源自动机器学习框架 简化表格数据建模
AutoML机器学习模型训练数据分析MLJARGithub开源项目
mljar-supervised是一个专门用于表格数据的开源自动机器学习框架。它可自动完成数据预处理、模型构建和超参数调优,生成详细的Markdown报告解释每个模型。该框架提供多种工作模式,包括数据解释、生产部署、竞赛优化等。支持多种算法并具备模型集成功能,能有效简化数据科学工作流程,帮助用户快速构建高质量机器学习模型。
Hypernets - 自动机器学习通用框架 支持多种算法与优化技术
HypernetsAutoML机器学习神经架构搜索超参数优化Github开源项目
Hypernets作为一个通用AutoML框架,能够为多种机器学习框架和库提供自动优化工具。它不仅支持TensorFlow、Keras、PyTorch等深度学习框架,还兼容scikit-learn、LightGBM、XGBoost等机器学习库。该框架集成了多种先进的单目标和多目标优化算法,并引入抽象搜索空间表示,满足超参数优化和神经架构搜索的需求,从而适应各类自动机器学习场景。
falcon - 轻量级自动机器学习库 支持一行代码训练模型
AutoMLFalcon机器学习ONNXPython库Github开源项目
Falcon是一个轻量级Python库,通过单行代码即可训练生产级机器学习模型。该库提供简单易用的接口,支持多种预设配置,并可扩展集成其他框架。Falcon深度支持ONNX,实现复杂pipelines导出为单一ONNX图,便于跨平台部署。目前主要支持表格分类和回归任务,适合快速构建和集成机器学习项目。
相关文章