Project Icon

uni2ts

时间序列预测Transformer模型的统一训练框架

Uni2TS是一个基于PyTorch的开源库,专门用于时间序列Transformer的研究和应用。它提供了统一的大规模预训练解决方案,支持微调、推理和评估。该库集成了零样本预测、自定义数据集处理和全面评估功能,并提供简化的命令行界面。Uni2TS旨在推动时间序列预测领域的进展,适用于研究和实际应用场景。

modeltime - R语言时间序列预测框架 整合机器学习与传统方法
GithubR语言modeltime工作流开源项目时间序列预测机器学习
modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。
Time-LLM - 开发用于时序预测的高级语言模型
GithubICLR 2024Time-LLM大语言模型开源项目时间序列预测框架重编程
Time-LLM将大型语言模型重新用于时序预测,利用其强大功能处理时序数据,并结合专家知识和任务说明提升预测精度。支持Llama-7B、GPT-2和BERT等模型,框架灵活且适应性广泛。了解Time-LLM的最新更新、使用案例和技术细节,访问我们的详细介绍及相关资源。
tsfresh - 时间序列特征自动提取和分析的Python开源工具
GithubPythontsfresh开源项目时间序列机器学习特征提取
tsfresh是一个开源Python库,专注于时间序列数据的自动特征提取。它集成了统计学、时间序列分析、信号处理和非线性动力学的算法,并提供了特征选择机制。该工具可处理多种采样数据和事件序列,提供100多种预定义特征,并通过内置过滤程序评估特征重要性。tsfresh支持回归和分类任务,兼容sklearn、pandas和numpy,可在本地或集群环境运行,为时间序列分析提供了高效解决方案。
TransBTS - 使用Transformer实现多模态脑肿瘤医学图像分割
GithubTransBTSTransBTSV2Transformer多模态数据集开源项目脑肿瘤分割
TransBTS与TransBTSV2采用Transformer技术显著提升多模态脑肿瘤与医学图像体积分割的效率与准确性。项目包括详细的模型实现和相关文献,支持BraTS、LiTS、KiTS等医学图像数据集,并利用Python和Pytorch进行数据预处理、模型训练和测试,支持分布式训练。适用于需要高效精准医学图像分割解决方案的研究人员和工程师。
h-transformer-1d - 高效序列学习的分层注意力变换器实现
GithubH-Transformer-1DTransformer序列学习开源项目神经网络长程注意力
H-Transformer-1D是一个开源项目,实现了基于分层注意力机制的Transformer模型。这种实现使序列学习达到亚二次方复杂度,在Long Range Arena基准测试中表现优异。项目支持可变序列长度、可逆性和令牌移位等功能,适用于长序列数据处理。该实现主要提供编码器(非自回归)版本,为自然语言处理和机器学习领域提供了新的研究方向。
deeptime - Python时间序列分析与动态建模库
Githubdeeptime动力学模型开源库开源项目时间序列分析机器学习
deeptime是一个专注于时间序列数据分析的Python库,集成了多种动态模型估计工具。该库涵盖传统线性学习方法(如马尔可夫状态模型、隐马尔可夫模型和Koopman模型)及先进的核方法和深度学习技术。与scikit-learn兼容的同时,deeptime还提供了独特的Model类,用于分析热力学、动力学和其他动态特性。该库支持多平台安装,适用于各类时间序列数据研究。
lite-transformer - 现代高效的长短期注意力Transformer模型
GithubLite Transformer分布式训练开源项目数据预处理模型训练测试模型
Lite Transformer是一种结合长短期注意力机制的高效Transformer模型。它基于PyTorch开发,支持多种数据集的下载和预处理,能够在NVIDIA GPU上高效运行。模型在多个大型数据集上表现优异,并支持分布式训练和预训练模型下载。
OpenSTL - OpenSTL:时空预测学习的全面基准和模块化框架
GithubNeurIPS 2023OpenSTLPyTorch开源项目数据集时空预测
OpenSTL是一个全面的时空预测学习基准,涵盖了从合成运动物体轨迹到人体运动、驾驶场景、交通流量和天气预报的多样任务。该框架模块化设计并具有良好的扩展性,支持PyTorch Lightning和原始PyTorch实现。其主要功能包括灵活的代码设计和标准基准,组织严密并易于使用。
TimeMixer - 多尺度混合技术推动时间序列预测新突破
GithubICLRMLP架构TimeMixer多尺度混合开源项目时间序列预测
TimeMixer是一种基于MLP架构的时间序列预测模型,通过多尺度混合技术实现长短期预测的性能突破。该模型利用Past-Decomposable-Mixing和Future-Multipredictor-Mixing模块处理多尺度时间序列,在多个基准数据集上展现出优异性能。TimeMixer不仅预测精度高,还具备良好的运行效率,适用于多种要求高效预测的应用场景。
UniTR - 多模态变换器网络推动3D感知进展
3D感知BEV分割GithubUniTR多模态转换器开源项目目标检测
UniTR是一种新型统一多模态变换器网络,用于3D感知任务。它通过共享权重处理相机和激光雷达等多传感器数据,实现高效多模态融合。在nuScenes数据集上,UniTR在3D目标检测和BEV地图分割任务中均达到最新水平,且降低推理延迟。该研究为提升自动驾驶系统的感知能力提供了新思路。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号