Project Icon

Mistral-Nemo-Instruct-2407-GGUF

多语言高性能指令型语言模型的GGUF量化方案

Mistral-Nemo-Instruct-2407-GGUF是Mistral AI和NVIDIA联合开发的指令微调大语言模型的量化版本。该模型支持多语言处理,性能优于同等规模模型。项目提供多种GGUF量化方案,文件大小从4.79GB到24.50GB不等,适用于不同硬件配置,方便在各类设备上部署。

Mixtral-8x7B-v0.1-GGUF - Mixtral模型的多平台兼容量化文件
GithubHuggingfaceMistral AIMixtral 8X7B开源项目推理模型模型格式量化
Mixtral GGUF模型文件采用新量化格式,支持2至8位模型,适用于多平台的CPU和GPU推理。文件兼容llama.cpp、KoboldCpp和LM Studio等平台。由Mistral AI创建,Apache-2.0协议许可,支持多语言,高效推理。
medicine-LLM-13B-GGUF - 专业级医学大语言模型GGUF格式量化版本
GGUFGithubHuggingfaceMedicine LLM医学人工智能大语言模型开源项目模型模型量化
本项目提供AdaptLLM开发的Medicine LLM 13B模型的GGUF量化版本。GGUF是llama.cpp团队推出的新格式,替代了旧有的GGML。项目包含2位到8位精度的多种量化版本,可适应不同硬件配置和性能需求。GGUF文件兼容多种客户端和库,便于用户灵活使用。量化版本在优化资源使用的同时,也保证了模型质量。
Infinity-Instruct-3M-0613-Mistral-7B - 提升语言模型性能的开源指导调优模型
AlpacaEval2.0GithubHuggingfaceInfinity Instruct开源模型开源项目指令微调无反馈强化学习模型
Infinity-Instruct-3M-0613-Mistral-7B是一个开源的指导调优模型,无需人类反馈的强化学习。该模型在百万级指令数据集上经过微调,在AlpacaEval 2.0基准测试中取得了25.5的高分,表现优于Mixtral 8x7B v0.1、Gemini Pro和GPT-3.5。通过低成本训练提高了Mistral-7B的基础能力和对话能力,并在MT-Bench测试中表现出色。适合多样化的下游任务,该模型为研究与应用提供了良好的支持。
Qwen2.5-0.5B-Instruct-GGUF - 支持29种语言的多功能语言处理模型
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目模型生成长文本量化
Qwen2.5系列大幅提升了编码、数学和指令跟随能力,支持长上下文的多语言处理,覆盖29种语言。该模型以GGUF格式提供因果语言模型,支持预训练和后训练,非常适合灵活的对话设计。其指令调整能力强,能有效应对多样化的系统提示,尤其在生成结构化输出(如JSON)方面表现突出。模型具备0.49B参数,24层结构,支持多种量化方法。
CodeLlama-13B-Instruct-GGUF - 探索GGUF在高效处理与兼容性上的独特优势
CodeLlama 13B InstructGPU加速GithubHuggingface开源项目文本生成模型模型量化编程助手
CodeLlama 13B Instruct项目引入了由llama.cpp团队开发的GGUF格式,提供了比GGML更优的解决方案。在标记分词、特殊标记及元数据支持方面有所改进,并提供多种量化模型选项,从Python到Web UI的广泛兼容性及GPU加速支持,使其成为性能与便捷性的优秀结合。
MadMix-Unleashed-12B-i1-GGUF - MadMix-Unleashed-12B模型量化文件的使用与性能分析
GithubHugging FaceHuggingfaceMadMix-Unleashed-12B开源项目服务器模型量化
项目MadMix-Unleashed-12B提供多种量化文件,适用于不同应用需求。量化文件如i1-IQ1_S和i1-IQ1_M等,可以根据性能和质量要求进行选择。文档中详细阐述了GGUF文件的使用方法,并提供了使用说明和质量比较。感谢nethype GmbH和@nicoboss的技术支持,他们的贡献提升了量化模型的质量。
fine-tune-mistral - Mistral大语言模型全量微调开源项目
GithubHugging FaceMistral开源项目微调模型训练深度学习
fine-tune-mistral是一个专注于Mistral 7B大语言模型全量微调的开源项目。项目提供完整训练代码和使用说明,支持多GPU训练。其中包含多项训练技巧,如学习率调整和数据量建议等。项目还强调通过评估任务来衡量模型性能改进。该工具为研究者提供了一个进行Mistral模型定制化的便捷平台。
Behemoth-123B-v1-GGUF - 多种量化策略优化文本生成模型效率
Behemoth-123B-v1GithubHuggingface开源项目性能优化文本生成模型模型下载量化
Behemoth-123B-v1-GGUF 项目运用 Llamacpp imatrix 技术进行模型量化,支持从 Q8_0 到 IQ1_M 的多种格式,适应不同硬件环境。项目涵盖多种文件种类,量化质量和大小各异,从高质到低质,满足多样使用需求。用户可根据 RAM 和 VRAM 选择合适文件,平衡速度与质量的追求。Q8_0 格式在嵌入和输出权重方面的质量表现突出,而适用于 ARM 芯片的 Q4_0_X_X 格式则显著提升运算速度,尤其适合低内存硬件。
Nemotron-Mini-4B-Instruct-GGUF - 量化模型应用指南与选择推荐
项目通过llama.cpp实现模型的imatrix量化,支持多种格式用于文本生成。用户可在LM Studio中运行这些量化模型,选择合适版本以优化内存与性能。推荐Q6_K_L、Q5_K_L等高质量版本,适用于嵌入与输出权重要求高的场景。支持ARM芯片的Q4_0_X_X版本提供显著加速。使用huggingface-cli简单易用,确保资源充足以提升体验。
Tiger-Gemma-9B-v3-GGUF - ARM推理优化与量化模型文件的综合指南
GithubHuggingfaceTiger-Gemma-9B-v3llama.cpp开源项目模型模型下载质量优化量化
Tiger-Gemma-9B-v3-GGUF项目提供了一系列专为ARM推理优化的量化模型文件,格式涵盖f16至Q2_K。项目采用llama.cpp的imatrix方法确保模型的输出和嵌入权重高精度,并允许通过huggingface-cli灵活下载文件。用户可根据设备资源选择'I-quant'或'K-quant'格式,以平衡高性能和空间效率,适用于文本生成任务的开发与研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号