Project Icon

Fast-BEV

新一代鸟瞰视角感知系统

Fast-BEV是一种先进的鸟瞰视角感知系统,专注于3D目标检测和BEV语义分割。该项目针对自动驾驶等应用场景进行了优化,提供多种模型配置和CUDA、TensorRT加速支持。Fast-BEV不仅在性能和速度方面表现卓越,还提供了完整的安装指南、数据准备流程和训练方法,为研究人员和开发者提供了强大的工具。作为领先的感知算法和计算机视觉解决方案,Fast-BEV为鸟瞰视角感知任务设立了新的标准。

BEVFormer - 多摄像头鸟瞰图学习框架助力自动驾驶感知
BEVFormerGithub多相机感知开源项目目标检测自动驾驶鸟瞰图表示
BEVFormer是一个用于自动驾驶感知的开源框架,通过时空Transformer从多摄像头图像中学习统一的鸟瞰图表示。该方法利用预定义的网格查询,结合空间交叉注意力和时间自注意力机制,有效聚合多视角的空间和时序信息。在nuScenes测试集上,BEVFormer达到56.9%的NDS指标,显著超越现有方法,与激光雷达系统性能相当。这一创新为基于纯视觉的3D目标检测提供了新的基准。
bevfusion - 具有统一鸟瞰图表示的多任务多传感器融合
3D目标检测BEVFusionGithub多传感器融合开源项目自主驾驶鸟瞰图表示
BEVFusion是一个有效的多任务多传感器融合框架,通过在共享的鸟瞰视角表示空间中统一多模态特征,解决了传统点级融合方法的局限性。其优化的视角转换和显著降迟特性使其在各种3D感知任务中表现出色。该框架在提升3D物体检测和BEV图分割性能的同时,大幅降低计算成本,树立了新行业标杆。
Cam2BEV - 深度学习实现多视角车载图像到语义分割鸟瞰图转换
Cam2BEVGithub开源项目深度学习自动驾驶语义分割鸟瞰图
该项目提出一种深度学习方法,将多个车载摄像头图像转换为语义分割鸟瞰图(BEV)。采用合成数据集训练,可良好泛化到真实场景。方法使用语义分割图像作为输入,缩小了仿真与真实数据的差距,无需手动标注。项目开源了代码、网络架构和数据集,适用于自动驾驶环境感知研究。相比传统逆透视映射,该方法在处理3D物体和遮挡区域时表现更佳。
BEVFormer_tensorrt - BEVFormer和BEVDet的TensorRT高效部署方案
BEV 3D DetectionGPU内存优化GithubTensorRT开源项目推理加速量化
本项目实现BEVFormer和BEVDet在TensorRT上的高效部署,支持FP32/FP16/INT8推理。通过优化TensorRT算子,BEVFormer base模型推理速度提升4倍,模型大小减少90%,GPU内存节省80%。同时支持MMDetection中2D目标检测模型的INT8量化部署。项目提供详细基准测试,展示不同配置下的精度和速度表现。
SparseBEV - 多摄像头视频中的高性能稀疏3D目标检测技术
GithubICCV 2023PyTorchSparseBEVnuScenes开源项目立体检测
SparseBEV利用多摄像头视频实现高性能稀疏3D目标检测,得到ICCV 2023的认可,并提供PyTorch实现、训练和评估指南。新发布的SparseOcc展示了全稀疏架构支持多种预训练权重和配置文件。用户可使用提供的代码进行可视化和模型优化,实现高效3D检测。兼容不同版本的PyTorch和CUDA,表现卓越。
Far3D - 突破远距离3D目标检测的新框架,提升环视感知能力
3D目标检测Far3DGithub开源项目深度学习自动驾驶计算机视觉
这是一个创新的稀疏查询框架,专注于解决远距离3D目标检测问题。该项目通过2D目标先验生成自适应3D查询,并利用透视感知聚合模块处理多视角和多尺度特征。还开发了范围调制的3D去噪技术,有效解决了查询错误传播和收敛问题。在Argoverse 2和nuScenes数据集上,展现出优异的性能,推动了环视3D目标检测技术的发展。
Vision-Centric-BEV-Perception - 视觉驱动的鸟瞰视角感知技术与应用综述
Depth based PV2BEVGEOMETRY BASED PV2BEVGithubNETWORK BASED PV2BEVTransformer based PV2BEVVision-Centric BEV Perception开源项目
本文全面探讨了视觉驱动的鸟瞰视角(BEV)感知技术的应用和最新进展。文章覆盖了多个数据集、几何转换以及网络架构,展示了在逆向透视投影、深度转换和网络基础的PV2BEV转换领域的研究成果。还总结了从MLP到Transformer等现代架构在3D检测和语义分割任务上的表现,并提供了详细的时间线和基准测试结果,帮助读者理解和利用这些技术在自动驾驶等相关领域。
PETR - 多视角3D感知框架 目标检测与BEV分割的统一解决方案
3D目标检测GithubPETRv2nuScenes数据集位置嵌入多视图感知开源项目
PETR是一个多视角3D感知框架,通过位置嵌入变换将3D坐标信息编码到图像特征中。其升级版PETRv2引入时序建模,支持目标检测和BEV分割。该框架在nuScenes数据集上展现了出色性能,为3D感知研究提供了有力基线。此外,PETR还支持3D车道线检测,相关工作在CVPR 2023工作坊中获得第一名。
DSVT - 易于部署的大规模点云3D对象检测系统
3D对象检测CVPR 2023DSVTGithubWaymo动态稀疏体素转化器开源项目
DSVT是一款高效且易于部署的大规模点云3D对象检测系统,适用于Waymo和NuScenes等数据集。通过动态稀疏体素变换器和旋转集合分区策略,DSVT实现了27Hz的实时推理速度,提供了在单帧和多帧检测中的卓越表现,适用于自动驾驶等场景。
3D-deformable-attention - 3D可变形注意力技术提升自动驾驶物体检测精度
3D目标检测BEVFormerDFA3DGithub开源项目深度估计特征提升
3D-deformable-attention项目提出了3D可变形注意力(DFA3D)操作符,用于2D到3D特征提升。该方法首先利用深度估计将2D特征扩展到3D空间,再通过DFA3D聚合3D特征。这种方法缓解了深度歧义问题,并支持逐层特征细化。在多个基准测试中,DFA3D平均提高1.41 mAP,高质量深度信息下最高提升15.1 mAP。研究结果显示DFA3D在自动驾驶3D目标检测等任务中具有较大潜力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号