Project Icon

stable-baselines3-contrib

实验性强化学习算法和工具

提供最新的实验性强化学习算法和工具,保持稳定基线风格和文档,适用于更广泛的实际应用需求。包括增强随机搜索(ARS)和量化回归DQN(QR-DQN)等算法,以及适用于Gym环境的包装器。适合需要超越主存储库限制且仍需高可靠性的用户。

openai_lab - 提升强化学习效率的实验框架,兼容OpenAI Gym、Tensorflow和Keras
GithubKerasOpenAI GymOpenAI LabTensorflow开源项目强化学习
OpenAI Lab提供统一的强化学习环境和代理接口,内置主要强化学习算法。用户可轻松进行大量超参数优化实验,自动生成日志、图表和分析报告。实验设置采用标准化JSON格式,确保实验可重复且易于比较。支持自动分析实验结果,帮助选择最佳解决方案,专注于强化学习的关键研究,如算法、策略、记忆和参数调优。
pytorch-rl - Pytorch中的深度强化学习算法实现
GithubOpenAI GymPytorch开源项目强化学习机器人任务深度学习
pytorch-rl项目在Pytorch中实现了多种深度强化学习算法,适用于连续动作空间。用户可以在CPU或GPU上高效训练这些算法,并与OpenAI Gym无缝集成。支持的算法包括DQN、DDPG、PPO等,涵盖环境建模和参数空间噪声探索等功能。
DRL-Pytorch - PyTorch实现的深度强化学习算法集合
DRL算法GithubPyTorch人工智能开源项目强化学习深度学习
DRL-Pytorch项目提供多种常用深度强化学习算法的PyTorch实现,包括Q-learning、DQN变体、PPO、DDPG、TD3和SAC等。代码结构清晰统一,便于研究人员和开发者比较不同算法。项目还包含详细使用说明、依赖列表和学习资源推荐,有助于快速入门和实践。
DRLib - 简洁高效的深度强化学习算法集成库
DRLibGithubHERPER开源项目机器人操作深度强化学习
DRLib是一个集成主流off-policy强化学习算法的开源库,支持HER和PER技术。基于OpenAI Spinning Up开发,提供TensorFlow和PyTorch两个版本。相比原版更易用和调试,适合机器人相关任务研究。提供详细环境配置教程。
awesome-deep-rl - 全面的深度强化学习资源库
Github基准测试开源库开源项目深度强化学习环境模拟竞赛
该项目汇集了深度强化学习领域的各类资源,包括主流库、基准测试结果、训练环境、竞赛信息和发展时间线。研究人员和开发者可以在此快速了解该领域的全貌,获取有价值的工具和信息。作为一个综合性资源库,它为深度强化学习的学习和研究提供了便利。
morl-baselines - 多目标强化学习算法库 支持单策略和多策略实现
GithubMO-GymnasiumMORL-BaselinesPyTorch多目标强化学习开源项目算法库
MORL-Baselines是一个多目标强化学习算法库,提供多种PyTorch实现。该项目遵循MO-Gymnasium API,支持单策略和多策略算法,适用于SER和ESR标准。特点包括自动性能报告、代码规范和自动测试。实现了GPI-LS、MORL/D等多种算法,支持连续和离散观察/动作空间,为MORL研究和基准测试提供有力支持。
d3rlpy - 支持离线和在线深度强化学习的实用算法库
Githubd3rlpy安装开源项目强化学习离线RL算法
d3rlpy是一个为实践者和研究人员打造的深度强化学习库,支持离线和在线强化学习算法。无需掌握深度学习库,即可通过其直观的API使用多种先进算法。d3rlpy提供丰富的文档和教程,首创支持分布式Q函数,适用于机器人和医疗等复杂场景。兼容Linux、macOS和Windows,多种安装方式可供选择,欢迎试用和贡献代码。
Gymnasium - Python强化学习标准API和环境开源库
AI环境GithubGymnasiumPython库开源项目强化学习
Gymnasium是一个用于开发和比较强化学习算法的开源Python库,提供标准API和丰富的环境集。它包括经典控制、Box2D、玩具文本、MuJoCo和Atari等多种环境类型,促进算法与环境的高效交互。作为OpenAI Gym的延续,Gymnasium现由独立团队维护,提供完善的文档和活跃的社区支持。该库采用严格的版本控制以确保实验可重复性,并提供灵活的安装选项满足不同用户需求。
awesome-deep-rl - 深度强化学习领域的最新研究综述与应用案例
Deep Reinforcement LearningGithubModel-basedPolicy GradientReinforcement LearningUnsupervised RL开源项目
该项目收录了深度强化学习领域的重要研究成果和应用示例,包括最新的学术论文、框架、算法和应用案例,覆盖无监督、离线、价值基础和策略梯度等多种方法。项目内容经常更新,提供最新的研究动态和工具,如2024年的HILP与2022年的EDDICT。适合从事人工智能、机器学习和强化学习的专业人员与爱好者了解该领域的最新进展。
DeepRL - PyTorch 中深度强化学习算法的模块化实现
A2CDQNDeepRLGithubPyTorch开源项目深度强化学习
DeepRL项目使用PyTorch实现了一系列流行的深度强化学习算法,提供模块化框架,适用于从简单任务到高难度游戏。支持的算法包括DQN、C51、QR-DQN、A2C、DDPG、PPO等,并具备异步数据生成和传输功能。项目依赖PyTorch v1.5.1,具体依赖请参考Dockerfile和requirements.txt。此外,项目提供代码示例和性能曲线图,适合相关研究参考和使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号