Project Icon

LLFormer

高效处理超高清低光照图像的Transformer模型

LLFormer是一种新型Transformer模型,专门用于增强超高清低光照图像。通过创新的轴向多头自注意力和跨层注意力融合机制,LLFormer能高效处理4K和8K分辨率图像。在UHDLOL基准测试中,该模型性能显著优于现有方法。LLFormer不仅提升了图像质量,还能改善低光照条件下人脸检测等下游任务的效果。

LLaVA - 提升大型语言与视觉模型的视觉指令调优
GPT-4GithubLLaVA多模态交互大型语言与视觉模型开源项目视觉指令调优
LLaVA项目通过视觉指令调优提升大型语言与视觉模型的性能,达到了GPT-4级别。最新更新包括增强版LLaVA-NeXT模型及其在视频任务上的迁移能力,以及高效的LMMs-Eval评估管道。这些更新提升了模型的多任务和像素处理能力,支持LLama-3和Qwen等不同规模的模型,并提供丰富的示例代码、模型库和数据集,方便用户快速上手和深度研究。
Diffusion-Low-Light - 小波扩散模型提升低光照图像质量
GithubSiggraph Asia 2023低光照图像增强小波扩散模型开源项目深度学习计算机视觉
Diffusion-Low-Light是一个发表于Siggraph Asia 2023的开源项目,提出了基于小波扩散模型的低光照图像增强方法。该方法在LOLv1、LOLv2和LSRW等多个数据集上表现优异,与现有技术相比效果显著。项目提供预训练模型、代码和详细实施指南,在保持图像细节和自然度方面表现出色,为低光照图像处理领域带来了创新解决方案。
LITv2 - 基于HiLo注意力的快速视觉Transformer
GithubHiLo注意力LITv2图像分类开源项目目标检测视觉Transformer
LITv2是一种基于HiLo注意力机制的高效视觉Transformer模型。它将注意力头分为两组,分别处理高频局部细节和低频全局结构,从而在多种模型规模下实现了优于现有方法的性能和更快的速度。该项目开源了图像分类、目标检测和语义分割任务的预训练模型和代码实现。
MixFormer - 基于迭代混合注意力的端到端目标跟踪框架
GithubMixFormer开源项目注意力机制深度学习目标追踪计算机视觉
MixFormer是一种创新的端到端目标跟踪框架,采用目标-搜索混合注意力(MAM)骨干网络和角点头部结构,实现了无需显式集成模块的紧凑跟踪流程。这种无后处理方法在LaSOT、GOT-10K和TrackingNet等多个基准测试中表现卓越,并在VOT2020上取得0.584的EAO成绩。项目开源了代码、模型和原始结果,为目标跟踪研究领域提供了宝贵资源。
LFM - 潜空间流匹配实现高效图像生成
Flow MatchingGithubPyTorch图像生成开源项目潜在空间生成模型
LFM项目创新性地将流匹配应用于预训练自编码器的潜空间,显著提升高分辨率图像生成的效率。这种方法不仅在计算资源有限的情况下保持了图像质量,还首次将条件生成任务融入流匹配框架。经过广泛测试,LFM在多个数据集上均取得了优异的定量和定性结果。
flatformer - 优化点云变换器性能
3D目标检测FlatFormerGithubWaymo数据集开源项目点云transformer自注意力机制
FlatFormer是一种新型点云变换器算法,采用扁平化窗口注意力机制提高处理效率。在Waymo开放数据集上,它实现了领先的精度,并比现有方法快4.6倍。FlatFormer首次在边缘GPU上达到实时性能,为自动驾驶等对延迟敏感的应用开辟新途径。该算法通过平衡空间邻近性和计算规律性,减少了结构化和填充开销。
LLaVAR - 优化视觉指令微调的文本丰富图像理解模型
GithubLLaVAROCR能力多模态大语言模型开源项目文本丰富图像理解视觉指令微调
LLaVAR项目致力于增强大型语言模型对文本丰富图像的理解能力。通过改进视觉指令微调方法,该项目显著提升了模型在OCR相关任务上的表现。LLaVAR开源了模型权重、训练数据,并提供了环境配置、训练脚本和评估方法,为相关研究和开发提供了全面支持。
ModuleFormer - 高效可扩展的模块化语言模型架构
GithubMoLMModuleFormer大语言模型开源项目模块化稀疏激活
ModuleFormer是一种新型MoE架构,结合棒断注意力头和前馈专家两种专家类型。通过稀疏激活,实现高效性、可扩展性和专业化。基于此架构的MoLM语言模型系列,参数规模40亿到80亿不等,在提高吞吐量的同时保持性能,易于扩展新知识和针对特定任务优化。MoLM在多项基准测试中展现出优秀的效率和性能。
RGT - 递归泛化Transformer模型实现高效图像超分辨率
GithubRGTTransformer全局上下文图像超分辨率开源项目自注意力机制
RGT项目提出递归泛化Transformer模型,通过创新的自注意力机制高效捕获图像全局信息。该模型结合局部和全局特征,在图像超分辨率任务中实现了优异性能,为高质量图像重建提供新思路。实验结果显示RGT在多个评估指标上超越了现有先进方法。
EnlightenGAN - 无监督深度光照增强技术
EnlightenGANGithub图像增强开源项目无配对监督深度学习计算机视觉
EnlightenGAN是一种用于增强低光照图像质量的深度学习方法。该技术采用无监督学习方式,无需配对的低光/正常光照图像进行训练。EnlightenGAN基于生成对抗网络(GAN)架构,能有效提升各种复杂场景下的图像亮度和细节。在多个公开数据集上,EnlightenGAN展现出优秀性能,为计算机视觉和图像处理领域提供了新的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号