Project Icon

Nous-Hermes-2-Mixtral-8x7B-SFT-AWQ

低比特量化技术如何提升模型推理性能

Nous Hermes 2 Mixtral 8x7B SFT - AWQ由NousResearch开发,采用AWQ低比特量化技术,提供快速且精确的推理能力。支持4位量化的AWQ大幅提升了Transfomers推理速度,与GPTQ设定相比,保证了等同或更佳的质量表现。在Linux和Windows系统的NVIDIA GPU上运行良好,macOS用户建议使用GGUF模型。该模型结合来自多种开放数据集的百万条目数据,通过GPT-4生成数据进行训练,实现多项任务的业界领先性能,兼容Text Generation Webui、vLLM和Hugging Face TGI等多个平台,适用于不同环境下的高性能推理。

aya-23-8B-GGUF - 更精细的文本生成量化选项分析
GithubHuggingfacetransformers开源项目文本生成模型质心量化
项目使用最先进的llama.cpp imatrix量化技术,支持多语言文本生成。多种量化格式,例如Q8_0和紧凑型IQ系列,提供应用的灵活性。用户依据硬件选择文件,以优化性能。创新量化处理为多语言文本生成提供了更高效的实现路径。
Mixtral-8x7B-v0.1-GGUF - Mixtral模型的多平台兼容量化文件
GithubHuggingfaceMistral AIMixtral 8X7B开源项目推理模型模型格式量化
Mixtral GGUF模型文件采用新量化格式,支持2至8位模型,适用于多平台的CPU和GPU推理。文件兼容llama.cpp、KoboldCpp和LM Studio等平台。由Mistral AI创建,Apache-2.0协议许可,支持多语言,高效推理。
Qwen2.5-7B-bnb-4bit - 采用4bit量化技术加速Qwen2.5-7B模型并降低70%内存占用
GithubHuggingfaceQwen2.5Unsloth大语言模型开源项目模型模型微调深度学习
基于Qwen2.5-7B的量化优化版本,通过4bit量化技术将内存占用降低70%。模型拥有76亿参数,具备128K上下文长度和29种语言处理能力,支持编码、数学运算和长文本生成等功能。该版本在保持原有性能的同时实现轻量化部署,可用于后续的模型微调与定制开发。
MIstral-QUantized-70b_Miqu-1-70b-iMat.GGUF - 优质法语对话能力的70B模型,适用于大容量VRAM
GithubHuggingfaceMiqu 1 70bMistral AI上下文大小开源项目模型法语量化
Miqu 1 70b是Mistral Medium Alpha的一个模型,由Mistral AI公司开发,适合法语使用者。该模型在法语对话中表现出色,智能性能与精调的Llama 2 70b相当,并倾向于避免过拟合。Miqu提供多种量化格式,Q4_K_S和Q3_K_M在48GB和36GB VRAM上支持完全卸载,满足大容量VRAM用户需求。虽然Miqu与CodeLlama 70b有相同的100万theta值,但在实验中证明其最大上下文能力为32k,相较于4k更具优势,并提供较低的周转率。
NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1-GGUF - 结合多模型的量化文本生成引擎
GithubHuggingfaceNSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1transformers开源项目文本生成模型模型合并量化
NSFW_DPO_Noromaid-7b-Mistral-7B-Instruct-v0.1-GGUF是利用llama.cpp开发的量化模型,整合了mistralai和athirdpath的两款7B模型。通过slerp合并法和bfloat16数据类型,该项目优化了文本生成任务的性能。用户可以通过Transformers和Accelerate库在Python中完成文本生成。该模型结合了多模型的优点,专为处理复杂文本生成任务而设计,提供了高效的运行性能。
InternVL2-2B-AWQ - 跨多语言多图像任务的高效视觉语言模型
API接口GithubHuggingfaceInternVL2-2B图像文本多模态开源项目模型模型量化
InternVL2-2B-AWQ以AWQ算法实现4bit权重量化,模型推理速度较FP16提升至2.4倍。lmdeploy兼容众多NVIDIA GPU进行W4A16推理,提升离线批量推理效率。同时,该项目提供RESTful API服务并兼容OpenAI接口,快速部署和应用于视觉-语言任务。此多语言兼容的模型不仅提高推理效率,还具备灵活的服务特性。
Mistral-7B-OpenOrca-GPTQ - Mistral语言模型的GPTQ量化优化实现
GPTQ量化GithubHuggingfaceMistral-7B开源项目模型模型部署深度学习自然语言处理
本项目对Mistral-7B-OpenOrca模型进行GPTQ量化处理,提供4位和8位精度、多种分组大小的量化版本。通过优化存储和计算方式,在保持模型性能的同时大幅降低显存占用。项目支持text-generation-webui、Python等多种调用方式,并提供完整的使用文档。
Qwen2-0.5B-Instruct-GGUF - 高性能轻量级开源语言模型 支持多种量化等级
GGUF格式GithubHuggingfaceQwen2开源项目模型自然语言处理语言模型量化模型
Qwen2-0.5B-Instruct模型提供多种GGUF格式量化版本,从q2_k到q8_0不等。模型基于Transformer架构,使用SwiGLU激活和改进的分组查询注意力,支持多语言及代码处理。经过大规模预训练和监督微调,可通过llama.cpp部署,支持OpenAI API兼容调用。在WikiText困惑度测试中表现优秀,为轻量级开源语言模型应用提供了便利选择。
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
AutoAWQ - 面向大型语言模型的高效4位量化框架
AutoAWQGPU加速Github大语言模型开源项目推理量化
AutoAWQ是一个专门针对大型语言模型的4位量化框架,通过实现激活感知权重量化算法,可将模型速度提升3倍,同时减少3倍内存需求。该框架支持Mistral、LLaVa、Mixtral等多种模型,具备多GPU支持、CUDA和ROCm兼容性以及PEFT兼容训练等特性。AutoAWQ为提升大型语言模型的推理效率提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号