Project Icon

UnslopNemo-12B-v3-GGUF

实验性Mistral对话模型的增强表达版本

UnslopNemo-12B-v3-GGUF作为Mistral架构的实验性语言模型,对原有RP数据集进行了90%的优化处理。模型集成了Metharme、Mistral和Text Completion等多种功能,支持灵活的采样器参数调整。目前处于持续优化阶段,通过社区反馈不断完善其性能表现。

mistral-nemo-instruct-2407-awq - Mistral-Nemo-Instruct-2407模型的AWQ量化指令版本
GithubHuggingfaceMistralNeMo人工智能大语言模型开源项目模型自然语言处理
mistral-nemo-instruct-2407-awq是Mistral-Nemo-Instruct-2407模型的AWQ量化版本。这个项目通过使用AWQ(Activation-aware Weight Quantization)技术,在保持原有模型性能的基础上,显著降低了模型大小和计算资源需求。该模型适用于各类自然语言处理任务,为开发者和研究人员提供了一个优化的大规模语言模型选择。
BioMistral-7B-GGUF - 精准医学文本生成的多位量化模型
BioMistral-7B-GGUFGPU加速GithubHuggingfacePyTorch开源项目模型模型下载量化方法
BioMistral-7B-GGUF项目提供支持2至8位量化的GGUF格式模型文件,专为生成多语言的医学和生物文本而设计。由BioMistral创建,该模型兼容多种客户端和库,如llama.cpp,支持GPU加速。其兼容Autotrain和endpoints,可集成至LangChain环境。用户能借助如llama-cpp-python的工具实现快速下载和部署,旨在提升文本生成任务的性能,为高级对话和叙事应用提供支持。
Llama-3.1-Nemotron-70B-Instruct-bnb-4bit - 基于Unsloth技术的大语言模型高性能微调框架
GithubHuggingfaceLlama 3.1NVIDIA代码优化开源项目模型模型微调深度学习
Unsloth优化的Llama 3.1 Nemotron 70B指令模型,在保持模型性能的同时实现内存占用降低70%、训练速度提升2-5倍的优化效果。该框架支持Llama 3.2、Mistral、Phi-3.5等主流大语言模型的微调,提供适配Google Colab的入门级notebooks,支持GGUF、vLLM等多种导出格式。
Mistral-Small-Instruct-2409 - 22B参数高性能指令微调语言模型
AI聊天GithubHuggingfaceMistral-Small-Instruct-2409函数调用大语言模型开源项目模型模型推理
Mistral-Small-Instruct-2409是一款22B参数的指令微调语言模型,具备32768词汇量和32k序列长度。该模型支持聊天、指令跟随和函数调用等功能,可通过vLLM、mistral-inference或Hugging Face Transformers库进行使用。作为一个开源项目,Mistral-Small-Instruct-2409为自然语言处理研究和应用提供了新的可能性。
SciPhi-Mistral-7B-32k - 基于Mistral-7B-v0.1增强科学推理与教育能力的AI模型
GithubHuggingfaceSciPhi-Mistral-7B-32kTransformer大语言模型开源项目教育能力模型科学推理
SciPhi-Mistral-7B-32k是从Mistral-7B-v0.1微调而来的大型语言模型,通过四轮微调和超过十亿个token的数据集,实现了卓越的科学推理及教育能力。其特点包括采用变压器架构、组内查询注意力、滑窗注意力,并支持字节回退BPE分词器。SciPhi-Self-RAG-Mistral-7B-32k当前可用,具体细节可查看相关文档。
Mistral-7B-Instruct-v0.2 - 开源大语言模型支持32K上下文窗口的指令微调版本
GithubHuggingfaceMistral-7B-Instruct-v0.2大语言模型开源项目指令微调推理模型自然语言处理
Mistral-7B-Instruct-v0.2是基于Mistral-7B-v0.2进行指令微调的语言模型。该版本扩展了上下文窗口至32K,采用Rope-theta=1e6,并移除了滑动窗口注意力机制。模型提供了简化的指令格式和聊天模板,便于用户交互。作为一个快速演示,它展示了基础模型通过微调可以达到的性能水平。但需注意,该模型尚未包含内容审核功能,在特定场景下使用时应当谨慎。
ChatGLM2-6B - 基于GLM技术开发的中英双语对话模型
ChatGLM2-6BGithub开源项目性能提升推理速度显存占用模型开源
ChatGLM2-6B,基于GLM技术开发的中英双语对话模型,1.4T中英数据预训练后展现出改善的多语言处理效果,支持长达32K的上下文长度,新技术支持更快的推理速度和更好的对话体验。适用于学术研究和商业应用,如聊天机器人和客服AI,提供技术支持与灵活部署方案。
NeMo - 人工智能训练和部署平台
GithubNVIDIA NeMo多模态模型大语言模型开源项目热门生成式AI语音识别
NeMo框架是NVIDIA开发的一款云原生生成式AI框架,专为研究人员和使用PyTorch的开发者设计,支持大型语言模型、多模态模型、自动语音识别等多个领域。该框架能够利用现有代码和预训练的模型检查点,帮助用户高效创建和定制新的生成式AI模型。通过广泛的教程和文档,用户可以轻松开始使用NeMo框架,无论是在任何云端还是本地环境中。
rulm - 俄语语言模型:的实现与性能对比
GPT Role-play RealmGithubRuTurboAlpacaRussianSuperGLUESaigarulm开源项目
此项目展示了俄语语言模型的实现与比较,涵盖DataFest的分享、主要演示和Fine-tuning Colab资源链接。同时介绍了基于ChatGPT生成数据的RuTurboAlpaca和Saiga两个主要数据集,以及相关模型及其训练配置的详细内容。提供了数据集生成脚本和提示。此外,还展示了GPT Role-play Realm的数据集和模型评估结果,包括与GPT4和gpt-3.5-turbo的对比分析。
ChatGLM3 - 突破性能与功能的开源对话模型
AIChatGLM3Github大语言模型对话系统开源模型开源项目
ChatGLM3是智谱AI与清华大学KEG实验室联合开发的开源对话模型。该模型在保持对话流畅和易于部署的基础上,引入了更强大的基础架构、更全面的功能支持和多个开源版本。ChatGLM3-6B不仅支持多轮对话,还能进行工具调用和代码执行,在10B以下模型中表现出色。此外,项目还开源了基础模型和长文本版本,为学术研究和商业应用提供了多样化选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号