Project Icon

simpletransformers

快速构建和优化Transformer模型的开源工具

simpletransformers是一个基于Hugging Face Transformers的开源工具,通过简化的API让用户能够用少量代码快速构建和优化Transformer模型。该库支持文本分类、命名实体识别、问答系统等多种NLP任务,为研究人员和开发者提供了便捷的方式来应用这些强大的模型。simpletransformers具有直观的接口和丰富的功能,可用于各类自然语言处理场景,有效降低了使用Transformer模型的门槛。

gpt-fast - PyTorch原生高效文本生成项目
GithubPyTorchgpt-fast开源项目性能优化文本生成模型量化
gpt-fast是一个基于PyTorch的高效Transformer文本生成项目,代码精简(<1000行Python),仅依赖PyTorch和sentencepiece。项目特点包括极低延迟、int8/int4量化、推测解码和张量并行,支持NVIDIA和AMD GPU。gpt-fast不是框架或库,而是展示原生PyTorch性能的示例。它支持LLaMA系列和Mixtral 8x7B等模型,提供详细基准测试和多种优化技术。该项目实现了高效的文本生成,展现了PyTorch在AI领域的强大性能。
FLASH-pytorch - FLASH 线性时间内提升Transformer效能的开源实现
FLASHGithubPyTorchTransformer开源项目注意力机制深度学习
FLASH-pytorch是一个开源项目,实现了一种高效的Transformer变体。该项目采用门控注意力单元(GAU)和分组线性注意力,在线性时间内提升模型性能。它提供简洁API,支持自回归和非自回归模式,并整合多种位置编码技术。这一工具使研究人员和开发者能够便捷地探索和应用Transformer的最新优化技术。
nlp-de-cero-a-cien - 从零开始学习NLP,实践Hugging Face开发
GithubHugging FaceNLPTransformers开源项目机器学习自然语言处理
本项目提供全面的NLP学习课程,涵盖词嵌入到Transformer模型等关键技术。7次在线课程由行业专家授课,学习者可掌握核心知识并使用Hugging Face开发应用。课程设计适合不同水平学习者,提供录像回放及社区支持。
pytorch-openai-transformer-lm - 基于PyTorch的OpenAI Transformer语言模型实现
GithubOpenAIPyTorchTransformer Language Model开源项目模型预训练
该项目实现了OpenAI Transformer语言模型在PyTorch中的复现,提供了预训练权重加载脚本及模型类。采用固定权重衰减和调度学习率优化模型,支持对ROCStories Cloze任务进行微调,效果接近原始TensorFlow实现。适用于深度学习研究和语言模型的生成与分类任务。
transformer-debugger - 深入洞察小型语言模型行为的自动化调试工具
GithubTransformer Debugger开源项目神经元查看器稀疏自编码器自动可解释性语言模型
Transformer Debugger是一款由OpenAI超级对齐团队开发的工具,专门用于分析小型语言模型的特定行为。该工具结合了自动化解释技术和稀疏自编码器,无需编写代码即可快速探索模型行为。它能识别影响特定行为的关键组件,自动生成解释,并追踪组件间的连接,从而揭示神经元回路。通过支持对前向传播的干预和观察,Transformer Debugger为研究人员提供了深入分析语言模型内部机制的强大功能。
setfit - SetFit高效小样本学习框架,支持多语言文本分类
GithubHugging Face HubSetFit多语言支持少量标签数据开源项目无需提示
SetFit是一种高效且无需提示的小样本微调框架,利用Sentence Transformers实现高准确度的小样本学习。不需要手工制作提示或语言模型转换器,直接从文本示例生成丰富嵌入,大大提高训练速度。在仅有少量标记数据的情况下,SetFit的精度可与大型模型相媲美。例如,针对客户评论情感数据集,仅使用每类8个标记样本就能达到RoBERTa Large的全量训练精度。支持多语言文本分类,兼容Hugging Face Hub,训练和推理过程简单直观,是一个高效实用的选择。
BitNet-Transformers - 缩放1-bit大语言模型,提高GPU内存利用率
BitNet-TransformersGithubHuggingfaceLLama(2)Wikitext-103pytorch开源项目
BitNet-Transformers项目使用Llama (2)架构,并通过1-bit权重缩放技术,实现对大型语言模型的高效训练和推理。该项目基于Huggingface Transformers,显著降低了GPU内存占用,从原始LLAMA的250MB减少到BitNet模型的最低要求。用户可通过wandb实时追踪训练进度,并在Wikitext-103上进行训练。项目提供了详细的开发环境配置和训练步骤指南,为研究者和开发者提供有力支持。
transformer-explainer - 帮助理解Transformer模型与GPT-2预测的实时交互式工具
GPT-2Georgia Institute of TechnologyGithubMIT许可Transformer Explainer交互式可视化工具开源项目
Transformer Explainer 是一款互动可视化工具,帮助理解基于Transformer的模型如GPT的工作原理。该工具在浏览器中运行实时的GPT-2模型,允许实验自己的文本并实时观察Transformer内部组件的协同预测过程。适合技术人员与学习者深入探索Transformer模型机制与应用。
SparseTransformer - PyTorch库实现可变长度稀疏Transformer用于3D点云处理
3D识别GithubPyTorchSpTr开源项目点云处理稀疏变压器
SparseTransformer (SpTr)是一个PyTorch库,专门用于实现可变长度稀疏Transformer,主要应用于3D点云数据处理。该库具有快速、内存高效和易用的特点,支持窗口Transformer等技术。SpTr已在多个计算机视觉研究中应用,包括LiDAR的球形Transformer和3D点云分割的分层Transformer。它能够轻松集成到基于Transformer的3D点云网络中,仅需少量修改即可使用。
Comprehensive-Transformer-TTS - 基于非自回归 Transformer 的 TTS
GithubPyTorchTTS开源项目持续时间建模语音合成非自回归变换器
该项目采用非自回归Transformer技术,集成多种最新状态转换模型。Comprehensive-Transformer-TTS不仅提供监督与非监督持续时间建模, 也支持多种数据集和SOTA技术,如Fastformer和Long-Short Transformer,力求在文本到语音转换领域取得领先成果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号