Project Icon

vit-tiny-patch16-224

轻量级ViT模型实现高效图像分类

vit-tiny-patch16-224是一个轻量级视觉transformer模型,专注于图像分类任务。这个模型采用16x16的patch大小和224x224的输入分辨率,在保持分类准确性的同时大幅降低了计算资源需求。其小型结构使其特别适合在资源受限环境中使用或需要快速推理的场景。值得注意的是,该模型是基于Google的ViT架构,由第三方研究者使用timm仓库的权重进行转换和发布。

Denoising-ViT - 去噪视觉Transformer优化密集识别任务效果
ECCV 2024GithubVision Transformers图像去噪密集识别任务开源项目特征图
Denoising Vision Transformers (DVT)是一种新型方法,用于消除视觉Transformer (ViT)特征图中的视觉伪影。DVT通过去除这些伪影,显著提升了ViT在语义分割和深度估计等密集识别任务中的表现。实验结果表明,DVT能有效改善MAE、DINO、DINOv2等多种预训练ViT模型在PASCAL VOC、ADE20K和NYU-D等数据集上的下游任务性能。
parti-pytorch - Google Parti模型的PyTorch实现 基于注意力的文本到图像生成
GithubPartiPytorch开源项目文本到图像生成深度学习计算机视觉
本项目是Google Parti模型的PyTorch实现,Parti是一种基于纯注意力机制的文本到图像生成神经网络。项目包含ViT VQGan VAE训练代码和视觉Transformer的优化,提高了训练效率。实现了简便的安装和使用流程,支持条件生成和分类器引导。这为研究人员和开发者提供了探索和改进文本到图像生成技术的平台。
CellViT - 基于Vision Transformer的细胞核分割与分类模型
CellViTGithubPanNuke数据集Vision Transformer开源项目深度学习细胞分割
CellViT是一种基于Vision Transformer的深度学习方法,用于数字化组织样本中的细胞核自动实例分割。该项目结合了预训练的Vision Transformer编码器和U-Net架构,在PanNuke数据集上取得了领先性能。通过引入加权采样策略,CellViT提高了对复杂细胞实例的识别能力。它能够快速处理千兆像素级全切片图像,并可与QuPath等软件集成,为后续分析提供定位化的深度特征。
LaVIT - 大语言模型理解生成视觉内容的统一框架
GithubLaVIT多模态大语言模型开源项目视觉内容理解视觉内容生成预训练策略
LaVIT项目是一个创新的多模态预训练框架,旨在增强大语言模型处理视觉内容的能力。该项目通过动态离散视觉标记化技术,将图像和视频转换为离散标记序列,使大语言模型能够理解和生成视觉内容。LaVIT支持图像和视频的理解、生成,以及多模态提示生成,为计算机视觉和自然语言处理的融合提供了新的可能性。
lite-transformer - 现代高效的长短期注意力Transformer模型
GithubLite Transformer分布式训练开源项目数据预处理模型训练测试模型
Lite Transformer是一种结合长短期注意力机制的高效Transformer模型。它基于PyTorch开发,支持多种数据集的下载和预处理,能够在NVIDIA GPU上高效运行。模型在多个大型数据集上表现优异,并支持分布式训练和预训练模型下载。
tf_mobilenetv3_large_075.in1k - MobileNet-v3大规模图像分类与特征提取模型
GithubHuggingfaceImageNet-1kMobileNetV3图像分类开源项目模型深度学习特征图提取
该模型为MobileNet-v3图像分类模型,基于ImageNet-1k数据集在Tensorflow上训练,并由Ross Wightman移植至PyTorch实现。使用224x224图像,拥有4.0百万参数和0.2 GMACs的效率。提供代码示例,帮助实现图像分类、特征提取和图像嵌入。更详细的比较信息可于timm项目页面查阅。
fast-DiT - 改进PyTorch实现的可扩展扩散模型转换器
DiTGithubPyTorchTransformer图像生成开源项目扩散模型
fast-DiT 项目提供了扩散模型转换器(DiT)的改进 PyTorch 实现。该项目包含预训练的类条件 DiT 模型、Hugging Face Space 和 Colab 笔记本,以及优化的训练脚本。通过采用梯度检查点、混合精度训练和 VAE 特征预提取等技术,显著提升了训练速度和内存效率。这一实现为研究人员和开发者提供了探索和应用扩散模型的有力工具。
efficientnet-b0 - EfficientNet的复合系数法在资源有限设备上提升图像分类效果
EfficientNetGithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型模型缩放
EfficientNet是一种训练于ImageNet-1k数据集、分辨率为224x224的卷积模型。该模型提出了复合系数方法,以均衡缩放模型的深度、宽度和分辨率。在移动设备上表现卓越,适用于图像分类。同时,用户可在Hugging Face平台上获取特定任务的微调版本。
resnet-152 - 深入解析ResNet-152在图像分类中的应用
GithubHuggingfaceResNet-152卷积神经网络图像分类图像识别开源项目模型深度学习
ResNet-152 v1.5模型在ImageNet-1k上预训练,采用224x224分辨率,改进后的下采样策略提升了模型的准确性。该模型可用于图像分类,亦可在模型中心找到特定任务的微调版本。
ViTAE-Transformer-Remote-Sensing - 遥感图像解释的视觉变压器模型集合
Github图像分割开源项目深度学习目标检测计算机视觉遥感
ViTAE-Transformer-Remote-Sensing项目致力于遥感图像解释领域的视觉变压器模型研究。该项目涵盖遥感预训练、场景识别、语义分割和目标检测等多项任务,提出了RVSA和MTP等创新模型架构和训练方法。项目还开发了SAMRS大规模遥感分割数据集。这些成果有助于推进遥感基础模型的发展,为遥感应用提供技术支持。项目成果包括遥感预训练研究、场景识别模型、语义分割技术和目标检测算法。RVSA和MTP等创新架构提升了模型性能和效率。SAMRS数据集的开发为遥感分割任务提供了大规模训练资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号