Project Icon

RUL

Transformer和AttMoE网络在锂电池剩余寿命预测中的应用

本项目探索了Transformer和AttMoE网络在锂电池剩余寿命预测领域的应用。研究基于NASA和CALCE数据集进行实验,展示了详细的实验结果和模型架构。项目分析了dropout和noise_level参数对模型性能的影响,并提出了优化建议。代码采用PyTorch实现,并提供了相关学术文献引用。此外,项目还整理了多个锂电池寿命预测研究的相关资源,为该领域的研究人员提供了comprehensive参考。项目内容包括模型图示、实验结果可视化以及代码包依赖说明。研究者可以通过提供的邮箱地址与作者进行进一步交流。项目持续更新,最新增加了AttMoE相关内容和预测图表。

图表

Transformer 结果

NASA 图表

CALCE 图表

补充说明

由于论文篇幅限制,未讨论 dropoutnoise_level 两个参数。通过设置这两个参数,可以获得比论文中更好的结果。

  • noise level = 0.01:设置 1% 的扰动值最佳:太大会降低性能,太小则效果不明显。

  • dropout = 1e-4~1e-3:为网络 dropout 设置一个小值,以确保模型的稳健性。

依赖包

更新

  • 2024年6月5日,添加模型和预测图表
  • 2024年1月3日,上传 AttMoE 开源代码
  • 2022年2月24日,更改部分变量名

CALCE 数据集处理参考

https://github.com/konkon3249/BatteryLifePrediction

电子邮箱

如有任何问题,请随时联系我:zhouxiuze@foxmail.com

更多内容

  1. 马里兰大学锂电池数据集 CALCE,基于 Python 的锂电池寿命预测: https://snailwish.com/437/

  2. NASA 锂电池数据集,基于 Python 的锂电池寿命预测: https://snailwish.com/395/

  3. NASA 锂电池数据集,基于 python 的 MLP 锂电池寿命预测: https://snailwish.com/427/

  4. NASA 和 CALCE 锂电池数据集,基于 Pytorch 的 RNN、LSTM、GRU 寿命预测: https://snailwish.com/497/

  5. 基于 Pytorch 的 Transformer 锂电池寿命预测: https://snailwish.com/555/

  6. 锂电池研究之七——基于 Pytorch 的高斯函数拟合时间序列数据: https://snailwish.com/576/

引用

@article{chen2022transformer,
  title={Transformer network for remaining useful life prediction of lithium-ion batteries},
  author={Chen, Daoquan and Hong, Weicong and Zhou, Xiuze},
  journal={Ieee Access},
  volume={10},
  pages={19621--19628},
  year={2022},
  publisher={IEEE}
}

@article{chen2024attmoe,
  title={AttMoE: Attention with Mixture of Experts for remaining useful life prediction of lithium-ion batteries},
  author={Chen, Daoquan and Zhou, Xiuze},
  journal={Journal of Energy Storage},
  volume={84},
  pages={110780},
  year={2024},
  publisher={Elsevier}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号