Project Icon

BiRefNet

高分辨率图像分割的双边参考网络

BiRefNet是一个专注于高分辨率图像分割的创新网络。该项目在DIS、COD和HRSOD等多个高分辨率任务中取得了领先成果。BiRefNet采用双边参考机制提升分割精度,支持HuggingFace一行代码加载。项目开源了完整代码实现、预训练模型,并提供在线演示。这一工作为高分辨率图像分割研究带来了新的思路。

SLANTbrainSeg - 全脑高分辨率MRI深度学习分割工具
GithubSLANT医学影像开源项目深度学习神经影像学脑部分割
SLANTbrainSeg是一款开源的全脑高分辨率MRI分割工具,采用人工智能深度学习技术。它可将T1 MRI扫描分割为133个标签,符合BrainCOLOR协议。项目提供Docker镜像,支持GPU和CPU,操作简便。SLANTbrainSeg在分割精度和效率上表现出色,适用于神经影像研究和临床分析。
mask2former-swin-large-ade-semantic - Mask2Former:统一架构实现多类型图像分割
GithubHuggingfaceMask2FormerTransformer图像分割开源项目模型计算机视觉语义分割
Mask2Former-Swin-Large-ADE-Semantic是一款先进的图像分割模型,基于Swin backbone构建并在ADE20k数据集上训练。该模型采用统一架构处理实例、语义和全景分割任务,通过预测掩码和标签集实现多类型分割。其核心优势在于采用改进的多尺度可变形注意力Transformer和掩码注意力Transformer解码器,在性能和效率方面均优于前代MaskFormer模型。Mask2Former适用于广泛的图像分割场景,能够提供精确的分割结果。
d2-net - 深度学习驱动的联合特征检测与描述
CNND2-NetGithub开源项目深度学习特征提取计算机视觉
D2-Net是一个用于联合检测和描述局部图像特征的卷积神经网络模型。该项目提供模型实现、预训练权重、特征提取脚本和MegaDepth数据集训练流程。D2-Net在图像匹配和3D重建等计算机视觉任务中表现优异,提高了特征提取的准确性和效率。项目支持多尺度特征提取,并包含在不同数据集上训练的模型权重。
SLiMe - 基于Stable Diffusion的单样本图像分割方法
GithubPyTorchSLiMeStable Diffusion图像分割开源项目深度学习
SLiMe是一种基于Stable Diffusion的单样本图像分割方法,通过单个训练样本实现准确分割。项目提供PyTorch实现,包含训练、测试和数据处理指南。SLiMe在PASCAL-Part和CelebAMask-HQ数据集上表现优异,为图像分割研究提供新思路。项目开源代码,支持自定义数据集训练和测试。SLiMe采用图像分块处理技术,提高分割精度。研究者可基于此探索更多单样本学习应用场景。
Segment-Anything-CLIP - 整合Segment-Anything与CLIP的图像分析框架
CLIPGithubsegment-anything人工智能图像分割开源项目计算机视觉
项目通过结合Segment-Anything的分割能力和CLIP的识别功能,构建了一个高效的图像分析框架。系统可自动生成多个分割掩码,并对每个掩码区域进行分类。这种创新方法不仅提高了图像分析的精度,还为计算机视觉领域的研究和应用开辟了新途径。
mask2former-swin-large-cityscapes-semantic - Mask2Former大型语义分割模型 适用多种图像分割任务
GithubHuggingfaceMask2Former图像分割开源项目模型深度学习计算机视觉语义分割
Mask2Former是一款先进的语义分割模型,基于Swin骨干网络在Cityscapes数据集上训练。该模型采用统一的掩码预测方法,可同时处理实例、语义和全景分割任务。通过引入多尺度可变形注意力Transformer和带掩码注意力的Transformer解码器,Mask2Former在性能和效率上均超越了先前的最佳模型。它为研究人员和开发者提供了一个强大的工具,可用于各种图像分割应用。
DenseNet - DenseNet高效内存卷积网络
CIFAR-10CVPR 2017DenseNetGithubImageNet开源项目模型
DenseNet通过每层与其他层的直接连接,提升图像识别准确性并减少参数和计算量。最新版本内存效率更高,支持CIFAR和ImageNet数据集,提供PyTorch、TensorFlow、Keras等深度学习框架的实现代码,适合研究和应用。
RevCol - 多任务计算机视觉的新型架构
GithubRevCol图像分类开源项目目标检测计算机视觉语义分割
RevCol是一种新型神经网络架构,采用多个子网络(列)通过多层可逆连接组成。作为基础模型骨干,RevCol适用于图像分类、目标检测和语义分割等计算机视觉任务。该架构在ImageNet等基准测试中表现优异,项目提供了训练和评估代码,以及多个数据集上的预训练模型权重,方便研究人员进行进一步探索。
LibtorchSegmentation - 高性能C++图像分割库
C++库GithubLibTorch图像分割开源项目神经网络预训练模型
LibtorchSegmentation是基于LibTorch的C++图像分割库,提供高级API和多种模型架构。支持15种预训练编码器,推理速度比PyTorch CUDA快35%。该库简单易用yet功能强大,适合快速开发和部署各类图像分割应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号