Project Icon

imbalanced-ensemble

专注类别不平衡的Python集成学习库

imbalanced-ensemble是一个针对类别不平衡数据的Python集成学习库。该库提供15种以上的集成不平衡学习算法和19种采样方法,特点包括易用API、优化性能和强大可视化功能。完全兼容scikit-learn和imbalanced-learn,支持二分类和多分类任务。imbalanced-ensemble适用于类别不平衡集成学习模型的快速实现、修改、评估和可视化。

IMBENS: Class-imbalanced Ensemble Learning in Python

Status CircleCI Status Read the Docs
PyPI
Traffic
Documentation
Paper & Citation
Language

⏳Quick Start with our 5-minute Guide & Detailed Examples

IMBENS (imported as imbens) is a Python library for quick implementation, modification, evaluation, and visualization of ensemble learning from class-imbalanced data. Currently, IMBENS includes over 15 ensemble imbalanced learning algorithms (SMOTEBoost, SMOTEBagging, RUSBoost, EasyEnsemble, SelfPacedEnsemble, etc) and 19 over-/under-sampling methods (SMOTE, ADASYN, TomekLinks, etc) from imbalance-learn.

🌈 IMBENS Highlights

  • 🧑‍💻 Ease-of-use: Unified, easy-to-use APIs with documentation and examples.
  • 🚀 Performance: Optimized performance with parallelization using joblib.
  • 📊 Benchmarking: Running & comparing multiple models with our visualizer.
  • 📺 Monitoring: Powerful, customizable, interactive training logging.
  • 🪐 Versatility: Full compatibility with scikit-learn and imbalanced-learn.
  • 📈 Functionality: Extending existing techniques from binary to multi-class setting.

✂️ Use IMBENS for class-imbalanced classification with <5 lines of code:

# Train an SPE classifier
from imbens.ensemble import SelfPacedEnsembleClassifier
clf = SelfPacedEnsembleClassifier(random_state=42)
clf.fit(X_train, y_train)

# Predict with an SPE classifier
y_pred = clf.predict(X_test)

🤗 Citing IMBENS

🍻 We appreciate your citation if you find our work helpful! The BibTeX entry:

@article{liu2023imbens,
  title={IMBENS: Ensemble Class-imbalanced Learning in Python},
  author={Liu, Zhining and Kang, Jian and Tong, Hanghang and Chang, Yi},
  journal={arXiv preprint arXiv:2111.12776},
  year={2023}
}

👯‍♂️ Contribute to IMBENS

Join us and become a contributor! Please refer to the contributing guidelines.

📚 Table of Contents

Installation

It is recommended to use pip for installation.
Please make sure the latest version is installed to avoid potential problems:

$ pip install imbalanced-ensemble            # normal install
$ pip install --upgrade imbalanced-ensemble  # update if needed

Or you can install imbalanced-ensemble by clone this repository:

$ git clone https://github.com/ZhiningLiu1998/imbalanced-ensemble.git
$ cd imbalanced-ensemble
$ pip install .

imbalanced-ensemble requires following dependencies:

List of implemented methods

Currently (v0.1.3, 2021/06), 16 ensemble imbalanced learning methods were implemented:
(Click to jump to the document page)

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号