Project Icon

Complete-Life-Cycle-of-a-Data-Science-Project

数据科学项目全生命周期实践指南

该项目提供了数据科学项目完整生命周期的实践指南。涵盖数据收集、清洗、特征工程、模型训练及部署全过程。详细介绍网络爬虫、API、数据库等数据获取方法,并汇总多个开放数据集资源。同时包含数据预处理、特征选择、模型评估等关键环节的最佳实践。对数据科学学习者和从业人员具有重要参考价值,有助于全面把握数据科学项目流程。

data-science-template - 数据科学项目结构化模板,提升团队协作效率
Github可复现性可维护性开源项目数据科学最佳实践项目结构
data-science-template为数据科学团队提供标准化项目结构。该模板整合hydra配置管理、pdoc文档生成、pre-commit代码审查和Poetry依赖管理等工具,提高项目可维护性和可重复性。借助Cookiecutter,团队可快速创建基于此模板的项目,搭建规范的数据科学项目框架,确保代码质量和一致性,有效提升协作效率。
Comprehensive_DL_Tutor - 全面深度学习教程引领零基础进阶专家
AIGithub开源项目教程机器学习深度学习神经网络
该项目提供全面的深度学习教程,涵盖Python科学计算库、机器学习基础和前沿深度学习算法。教程采用循序渐进的方法,融合理论与实践,适合零基础学习者和专业人士。内容持续更新,反映最新技术发展,为深度学习爱好者提供系统学习路径。项目内容包括Python科学计算库、机器学习基础和深度学习算法,适合不同水平的学习者。教程结构清晰,结合理论和实践,提供系统化学习体验。持续更新确保内容紧跟技术前沿,为深度学习领域提供全面且实用的学习资源。
data-scientist-roadmap2024 - 2024年数据科学家路线图:工具技能全面指南
Github云平台开源项目数据科学机器学习框架库编程语言
项目整理了2024年数据科学领域的核心技能路线图,内容涉及编程语言、机器学习库、云服务等多个方面。技能按难度分为基础、进阶和专业级别,并提供相关学习资源。此外,收录了多份真实面试案例,帮助读者了解行业需求,为职业发展做好准备。
data-science-ipython-notebooks - Python, TensorFlow, Scikit-learn 教程
GithubPythonTensorFlow开源项目数据科学机器学习深度学习
项目包含多个IPython笔记本,详解Python及其数据科学库例如TensorFlow、Scikit-learn与NumPy的使用,覆盖数据处理、统计分析到机器学习等多个应用场景。
Machine-Learning-Roadmap - 机器学习完整学习指南与优质资源推荐
Deep LearningGithubIIT KharagpurKLA CorporationMachine LearningPython开源项目
此页面全面介绍了学习机器学习所需的知识,包括数学和编程基础、机器学习和深度学习课程以及书籍推荐。精选资源助您从零开始掌握机器学习,具备开展项目和参加竞赛的技能。同时,提供热门框架和库的学习资源,适合初学者和进阶者。
data-engineer-handbook - 数据工程学习资源与行业洞察的综合指南
Github公司博客开源项目数据工程社区资源
该项目汇集了数据工程领域的丰富资源,包括推荐书籍、社区平台、公司简介、技术博客、白皮书、视频频道、播客和新闻通讯等。内容涵盖数据工程的方方面面,从入门基础到高阶主题,为数据工程从业者和学习者提供了全面的学习材料和行业洞察。无论是初学者还是资深专业人士,都能在此找到提升技能和把握行业动态的有价值信息。
cs-self-learning - 全面系统的计算机科学自学开源指南
CS自学Github开源课程开源项目编程语言计算机科学项目实践
这是一份全面的计算机科学自学指南,涵盖编程语言、算法、人工智能等多个领域。指南提供系统化学习路径,汇集优质开源课程资源和项目实践经验。内容包括多种主流编程语言、数学基础、计算机系统、网络、操作系统、编译原理、机器学习等核心领域。通过完成多个实际项目,学习者可以全面提升编程能力和解决问题的技巧。经过2-3年的学习,自学者可以掌握扎实的理论基础和实践能力,为未来的科研或就业做好准备。该指南适合计算机专业学生和有志于转行IT行业的人士使用。
ML-For-Beginners - 12周机器学习课程,涵盖回归、分类、聚类等经典技术
CurriculumData ScienceGithubMachine LearningMicrosoftScikit-learn开源项目
Microsoft提供的12周机器学习课程,共26节课,帮助初学者学习回归、分类、聚类等经典机器学习技术。课程内容丰富,包括预习复习测验、书面指导、视频演示和项目实践,覆盖基础知识、历史、自然语言处理、时间序列预测和强化学习。通过项目学习方式,学生能在实际操作中掌握新技能。
100-Days-Of-ML-Code - 掌握使用Python进行机器学习和深度学习的技巧
100天挑战Github决策树开源项目数据预处理机器学习随机森林
探索100天机器学习代码项目,该项目包括数据预处理和各种机器学习模型的练习,如线性回归、逻辑回归、决策树等。项目还涵盖了无监督学习方法和深入的Python, TensorFlow, Keras在深度学习中的应用。
data-science-interviews - 开源数据科学面试题库及答案集合
DataTalks.ClubGitHub项目Github开源协作开源项目数据科学面试问题
data-science-interviews是一个开源的数据科学面试问题和答案集合。项目涵盖理论知识、技术能力和概率等多个方面,内容由社区共同维护。用户可以贡献新的问题答案或改进现有内容。此外,项目还提供其他相关资源链接。这一资源旨在帮助数据科学从业者和求职者准备面试,提升专业能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号