Project Icon

QDax

高效加速质量多样性算法的开源框架

QDax是一个开源框架,用于加速质量多样性(QD)和神经进化算法。通过利用硬件加速器和大规模并行化,QDax将原本需要数天甚至数周才能在大型CPU集群上完成的QD算法运行时间缩短至几分钟。作为灵活易扩展的研究工具,QDax适用于各类问题设置,支持MAP-Elites、QDPG等多种核心QD算法,并提供多个基准任务实现。该项目由Adaptive & Intelligent Robotics Lab和InstaDeep联合开发维护。

blackjax - JAX贝叶斯采样库 支持CPU和GPU运算
BlackJAXGPUGithubJAX开源项目概率编程采样器
BlackJAX是一个为JAX开发的贝叶斯采样库,支持CPU和GPU计算。它提供多种采样器,可与概率编程语言集成。适用于需要采样器的研究人员、算法开发者和概率编程语言开发者。其模块化设计便于创建和定制采样算法,促进采样算法研究。BlackJAX通过简洁API和高性能,连接了简单框架与可定制库。
dynamax - JAX驱动的概率状态空间模型库
GithubJAX开源项目概率模型状态空间模型隐马尔可夫模型高斯状态空间模型
Dynamax是一个利用JAX开发的概率状态空间模型库,包含隐马尔可夫模型和线性高斯状态空间模型等。该库提供低级推理算法和面向对象接口,与JAX生态系统兼容。Dynamax支持状态估计、参数估计、在线滤波、离线平滑和未来预测等功能。库中包含丰富示例和文档,便于使用和学习。
purejaxrl - JAX强化学习框架实现千倍性能提升
GithubJaxPureJaxRL并行训练开源项目强化学习性能优化
PureJaxRL是一个端到端JAX强化学习框架,将整个训练流程(包括环境)实现在JAX中。通过JIT编译和避免CPU-GPU数据传输,在GPU上并行运行多个智能体时,性能比PyTorch实现提升1000倍以上。框架支持使用JAX的jit、vmap等功能优化训练流程,实现高效并行训练、快速超参数调优和元进化算法探索。
dopamine - 用于快速原型设计的强化学习研究框架
DQNDopamineGithubJAXTensorflow开源项目强化学习
Dopamine是一个用于快速原型设计强化学习算法的研究框架,旨在便于用户进行自由实验。其设计原则包括易于实验、灵活开发、紧凑可靠和结果可重复。支持的算法有DQN、C51、Rainbow、IQN和SAC,主要实现于jax。Dopamine提供了Docker容器及源码安装方法,适用于Atari和Mujoco环境,并推荐使用虚拟环境。更多信息请参阅官方文档。
qulacs - 快速高效的量子电路模拟库 适用于大规模复杂和参数化电路
C++GPUGithubPythonQulacs开源项目量子电路模拟
Qulacs是一个Python/C++开发的高性能量子电路模拟库,专注于大规模、含噪声和参数化量子电路的快速模拟。它采用并行化C/C++后端,支持噪声模型、参数化量子门和电路优化。Qulacs提供GPU加速功能和丰富的量子计算研究工具。在多项基准测试中,Qulacs展现出优秀的性能,适用于广泛的量子计算研究领域。
brax - 基于JAX的高性能物理引擎 适用于机器人和强化学习仿真
BraxGithubJAX仿真开源项目机器学习物理引擎
Brax是一款基于JAX的高性能物理引擎,专注于机器人、人体感知、材料科学和强化学习等领域的仿真应用。它支持单设备高效仿真和多设备并行仿真,无需依赖大型数据中心。Brax提供多种物理模拟管道,如MuJoCo XLA、广义坐标和基于位置的动力学,并统一API接口。此外,Brax集成了多种高效学习算法,能在短时间内完成智能体训练。
paxml - 基于Jax的高效机器学习实验配置和运行框架
Cloud TPUGithubGooglePaxml开源项目性能优化机器学习
Paxml是一个基于Jax的开源框架,致力于机器学习实验的配置与运行。该框架支持云TPU VM快速部署,同时提供PyPI和GitHub的稳定及开发版本下载。Paxml还包含丰富的文档资源和Jupyter Notebook教程,支持GPU加速,并可广泛适用于不同开发者的需求,是推动机器学习实验项目高效发展的优选工具。
qlib - 开源AI量化投资平台
GithubQlib人工智能开源项目机器学习模型量化投资
Qlib是一个开源AI量化投资平台,利用AI技术赋能金融研究和价值创造。支持监督学习、市场动态建模和强化学习等多种机器学习模式,覆盖量化投资的全部流程,如alpha寻求、风险管理、投资组合构建及订单执行。平台不断更新,引入最新量化研究成果和论文。
axlearn - 支持构建大规模深度学习模型的高效工具库
AXLearnGithubJAXXLA开源项目机器学习深度学习
AXLearn是一个基于JAX和XLA的深度学习库,支持大规模模型的构建、迭代和维护。该库允许用户通过配置系统从可重用模块中组合模型,并兼容Flax和Hugging Face transformers等库。AXLearn能够高效地在众多加速器上训练数百亿参数的模型,涵盖自然语言处理、计算机视觉和语音识别等领域,还支持在公共云上运行并提供作业和数据管理工具。了解更多详情,请参阅其核心组件和设计文档。
pgx - JAX原生并行游戏模拟器库用于强化学习研究
GithubJAXPgx并行计算开源项目强化学习游戏模拟器
Pgx是一个基于JAX的游戏模拟器库,专注于离散状态空间的强化学习研究。该库支持多种经典和现代棋牌游戏,包括国际象棋、围棋、将棋等。Pgx利用GPU/TPU实现高效并行计算,提供丰富的游戏环境和SVG可视化功能。其兼容PettingZoo API,方便研究人员进行实验。Pgx的设计旨在为强化学习研究提供高性能、多样化的仿真环境。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号