Project Icon

SLiMe

基于Stable Diffusion的单样本图像分割方法

SLiMe是一种基于Stable Diffusion的单样本图像分割方法,通过单个训练样本实现准确分割。项目提供PyTorch实现,包含训练、测试和数据处理指南。SLiMe在PASCAL-Part和CelebAMask-HQ数据集上表现优异,为图像分割研究提供新思路。项目开源代码,支持自定义数据集训练和测试。SLiMe采用图像分块处理技术,提高分割精度。研究者可基于此探索更多单样本学习应用场景。

swift-diffusion - Swift重新实现的Stable Diffusion模型
AI绘图GithubStable DiffusionSwift Diffusion开源项目深度学习移动设备优化
Swift重新实现的单文件Stable Diffusion模型,包含CLIP文本处理、UNet扩散和解码器等核心组件。项目致力于在移动设备上运行Stable Diffusion,通过内存优化和性能提升,实现与原始Python版本相当的效果。目前已完成主要模型移植,为移动AI应用开发提供新的可能。
DIS - 高精度二值图像分割方法,优化模型与即将发布的V2.0数据集
DIS datasetDichotomous Image SegmentationECCV 2022GithubIS-NetU2-Net开源项目
简要介绍高精度二值图像分割(DIS)任务的新进展,包括ECCV 2022接受的论文、DIS5K数据集V1.0和即将发布的V2.0版本。DIS任务应用于3D建模、图像编辑、艺术设计、静态图像动画和增强现实等领域。目前发布的为学术版本模型,用户可通过链接下载预训练权重进行推理。优化模型和更全面的数据集即将发布,敬请关注。
sam-vit-base - 基于ViT的高效零样本图像分割模型
GithubHuggingfaceSAM人工智能图像分割开源项目模型深度学习计算机视觉
sam-vit-base是Segment Anything Model (SAM)的ViT Base版本,一个强大的图像分割模型。它可根据点或框等输入提示生成高质量对象掩码,适用于多种分割任务。该模型在庞大数据集上训练,具备出色的零样本性能。其架构包含视觉编码器、提示编码器和掩码解码器,支持提示式和自动化掩码生成,为计算机视觉研究提供了新的可能性。
sliders - 扩散模型的精确控制工具
AI绘图Concept SlidersGithubLoRA图像编辑开源项目扩散模型
Concept Sliders是一个开源项目,为扩散模型提供精确控制的LoRA适配器。通过滑块界面,用户可以微调生成图像的属性,如年龄和表情。项目支持多个Stable Diffusion版本(v1.4、v2.1和XL),提供文本和图像概念滑块的训练脚本,以及实时演示和真实图像编辑功能。Concept Sliders为AI图像生成带来了新的精确控制方法,GitHub上可查看完整项目详情。
oneformer_ade20k_swin_tiny - 通过单一模型实现多任务图像分割的统一框架
GithubHuggingfaceOneFormer图像分割实例分割开源项目模型深度学习语义分割
OneFormer通过单一架构实现语义、实例和全景分割的统一处理。基于ADE20k数据集训练并采用Swin主干网络,这个紧凑型模型仅需一次训练即可完成多种图像分割任务。其独特的任务令牌机制实现了训练引导和推理动态化,为图像分割领域提供了高效的解决方案。
siglip-base-patch16-224 - SigLIP改进CLIP模型 实现更高效的零样本图像分类和检索
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是一种基于CLIP改进的多模态预训练模型,采用sigmoid损失函数优化语言-图像学习。该模型在WebLI数据集上以224x224分辨率预训练,适用于零样本图像分类和图像-文本检索任务。相比CLIP,SigLIP支持更大批量处理,且在小批量场景下表现更优。用户可通过Transformers库轻松加载和使用SigLIP模型,实现灵活高效的多模态应用。
panoptic-segment-anything - 零样本全景分割融合SAM、Grounding DINO和CLIPSeg的创新方法
CLIPSegGithubGrounding DINOSAM实例分割开源项目零样本全景分割
panoptic-segment-anything项目提出了一种创新的零样本全景分割方法。该方法巧妙结合Segment Anything Model (SAM)、Grounding DINO和CLIPSeg三个模型,克服了SAM在文本感知和语义分割方面的局限性。项目提供Colab notebook和Hugging Face Spaces上的Gradio演示,方便用户体验这一pipeline。此外,预测结果可上传至Segments.ai进行微调,为计算机视觉研究开辟了新的可能性。
SegVol - 突破性的通用交互式三维医学影像分割模型
3D建模CT扫描GithubSegVol人工智能医学图像分割开源项目
SegVol是一个创新的通用交互式三维医学影像分割模型,支持点、框和文本提示输入。该模型在96,000个CT扫描数据集上训练,可分割超过200个解剖类别。SegVol开源了推理代码、训练代码、模型参数以及预训练的ViT参数。通过内部和外部验证,SegVol展现出优秀的分割性能,为医学影像分析提供了新的解决方案。
sam2-hiera-large - SAM2模型实现图像和视频智能分割
GithubHuggingfaceSAM 2图像分割开源项目机器学习模型视频分割计算机视觉
SAM2-hiera-large是FAIR开发的图像和视频分割基础模型,支持可提示的视觉分割任务。模型提供简单API,适用于图像和视频预测。通过添加提示点或边界框,用户可实时获取分割结果,并在视频中传播提示。该模型为计算机视觉研究和应用提供了新的可能性。
mask2former-swin-large-ade-semantic - Mask2Former:统一架构实现多类型图像分割
GithubHuggingfaceMask2FormerTransformer图像分割开源项目模型计算机视觉语义分割
Mask2Former-Swin-Large-ADE-Semantic是一款先进的图像分割模型,基于Swin backbone构建并在ADE20k数据集上训练。该模型采用统一架构处理实例、语义和全景分割任务,通过预测掩码和标签集实现多类型分割。其核心优势在于采用改进的多尺度可变形注意力Transformer和掩码注意力Transformer解码器,在性能和效率方面均优于前代MaskFormer模型。Mask2Former适用于广泛的图像分割场景,能够提供精确的分割结果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号