Project Icon

pecos

用于大规模输出空间的高效机器学习框架

PECOS是一个专注于解决大规模输出空间问题的机器学习框架。它主要应用于极端多标签排序和大规模检索等任务,能在数百万候选项中快速识别和排序相关输出。该框架集成了X-Linear、XR-Transformer等算法和HNSW近似最近邻搜索技术,支持实时推理和海量数据处理。PECOS的设计灵活,可适应多种应用场景,为大规模机器学习任务提供了高效解决方案。

efficient-splade-VI-BT-large-doc - SPLADE模型实现高效文档检索与精准排序
GithubHuggingfaceSPLADE信息检索开源项目效率优化文档编码器检索模型模型
SPLADE模型是一种针对文档检索的高效架构,采用查询和文档推理分离设计。该模型在MS MARCO开发集上达到38.0 MRR@10和97.8 R@1000的性能,同时将推理延迟降至0.7毫秒。它在保持与先进神经排序器相近效果的同时,大幅缩短了延迟,接近传统BM25的速度,为文档检索领域提供了平衡效率与准确性的新方案。
xuance - 多框架支持的深度强化学习算法库
GithubXuanCe多框架支持开源库开源项目深度强化学习算法实现
XuanCe是一个开源的深度强化学习算法库,支持PyTorch、TensorFlow和MindSpore等多种框架。它兼容单智能体和多智能体任务,提供丰富的算法实现。XuanCe设计模块化,易于学习和使用,运行速度快。支持经典控制、Box2D、MuJoCo、Atari等多种环境,为研究和开发提供全面的深度强化学习工具。
marqo - 向量搜索引擎 ,实现文本和图像内容的矢量化处理及检索
GithubMarqo向量搜索嵌入生成开源项目数据索引机器学习
Marqo 作为全面的端到端向量搜索引擎,不仅实现文本和图像内容的矢量化处理及检索,更支持最新机器学习模型。其简洁的API设计允许开发者轻松实行多样的语义搜索操作,且无需独立处理数据嵌入问题。Marqo 的云服务部署有效降低响应时间,同时提供可伸缩的计算资源、持续可靠的服务及全时技术支持。
Quest - 长文本LLM推理的查询感知稀疏化框架
GithubKV缓存Quest开源项目注意力机制稀疏性长上下文LLM推理
Quest是一个创新的长文本LLM推理框架,通过在KV缓存中应用查询感知稀疏化技术,显著减少了注意力计算中的内存移动。该框架跟踪缓存页面的Key值范围,并利用Query向量评估页面重要性,仅加载最关键的KV缓存页面。实验表明,Quest可将自注意力计算速度提升至7.03倍,推理延迟降低2.23倍,同时在长依赖任务中保持高精度。
vizier - 开源黑盒优化框架助力机器学习研究
GithubVizier分布式系统开源项目机器学习超参数调优黑盒优化
Open Source Vizier是一个Python开发的黑盒优化框架,源自Google Vizier项目。它提供用户、开发者和基准测试三大API,支持分布式多客户端环境。该框架集成了基于JAX的贝叶斯优化器,适用于超参数调优、进化算法和程序搜索等多种场景。作为开源项目,Vizier具有灵活的安装选项,可满足不同的优化研究需求。
veScale - 基于PyTorch的大规模语言模型训练框架
GithubLLM训练框架PyTorch分布式训练并行计算开源项目模型执行
veScale是一个基于PyTorch的大规模语言模型训练框架,专为简化LLM训练过程而设计。它支持零代码修改、单设备抽象和自动并行规划,实现了张量并行、序列并行和数据并行等多种策略。框架还提供自动检查点重分片和nD分布式时间线功能,大幅提升了训练效率。作为一个持续发展的项目,veScale计划在未来引入更多先进功能,为研究人员和开发者提供全面的LLM训练解决方案。
EasyRec - 开源深度学习推荐系统框架
EasyRecGithub大规模模型开源项目推荐系统深度学习自动化
EasyRec是一个开源的推荐系统框架,集成了多种深度学习模型,用于候选生成、评分和多任务学习等推荐任务。该框架支持多种运行平台和数据输入方式,提供简单配置、智能功能和丰富的模型选择。EasyRec通过简化配置和超参数调优,提高了高性能模型的生成效率。它还支持大规模部署、自定义开发和快速向量检索,适用于多种推荐场景。
elasticsearch - 高性能分布式搜索和分析引擎 支持海量数据实时处理
ElasticsearchGithub分析引擎向量数据库开源项目搜索引擎数据存储
Elasticsearch是一款开源的分布式搜索和分析引擎,同时也是可扩展的数据存储和向量数据库。它专为生产环境优化,提供卓越的速度和相关性。作为Elastic Stack的核心组件,Elasticsearch支持近实时处理海量数据、执行向量搜索以及与生成式AI应用集成。它广泛应用于全文搜索、日志分析、指标监控、应用性能管理和安全日志等领域,为组织提供强大的数据处理和分析能力。
embedx - 高性能大规模嵌入向量训练和推理系统
Githubembedx图模型大规模embedding系统开源项目深度排序联合建模
embedx是基于C++开发的大规模嵌入向量训练和推理系统,已在微信看一看、搜一搜、腾讯新闻等12个业务中成功应用。系统可处理十亿级节点、千亿级边的图模型,以及百亿级样本、百亿特征的深度排序和召回模型。embedx支持图与深度学习的联合建模,在推荐、搜索、支付和风控等领域表现出色,实现了性能和效果的双重提升。
pegasus-multi_news - 优化文本摘要生成:采用混合数据集和随机抽样
GithubHuggingfacePegasus开源项目抽象总结模型模型训练混合和随机检查点重要句
该项目旨在提高文本摘要生成性能,通过混合C4和HugeNews数据集,以及随机抽样技术进行更有效的模型训练。训练过程中使用1.5M步数以增强预训练收敛性,均匀抽样15%到45%间的句间间隔,同时对重要句子施加20%随机扰动。更新后的sentencepiece tokenizer支持换行符编码,提升数据处理精度,展现了多领域数据集上的性能改进。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号